UNIVERSITY COLLEGE LONDON

l

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-

Physics 2B72: Mathematical Methods

1.27

COURSE CODE	: PHYS2B72
UNIT VALUE	: 0.50
DATE	: 09-MAY-05
ТІМЕ	: 10.00
TIME ALLOWED	: 2 Hours 30 Minutes

05-C1088-3-40 © 2005 University College London

TURN OVER

All questions may be attempted. Credit will be given for all work done correctly. Numbers in square brackets show the provisional allocation of marks per sub-section of the question.

1. (a) The matrices <u>A</u>, <u>B</u> and <u>D</u> are related by $\underline{D} = \underline{AB}$. Given that

×i

1

 $\underline{A} = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 6 \\ 3 & 1 & 2 \end{pmatrix} \quad \text{and} \quad \underline{D} = \begin{pmatrix} 6 & 5 & 6 \\ 24 & 26 & 16 \\ 5 & 16 & -3 \end{pmatrix},$

evaluate \underline{A}^{-1} and use this result to find the matrix \underline{B} .

(b) If [†] denotes the Hermitian conjugation, show that

$$(\underline{AB})^{\dagger} = \underline{B}^{\dagger} \underline{A}^{\dagger}.$$
 [3 marks]

The trace of a matrix is defined as the sum of its diagonal elements,

$$\mathrm{Tr}\left\{\underline{C}\right\} = \sum_{i} C_{ii}.$$

By writing out the matrix multiplication explicitly in terms of components, show that for any matrix <u>S</u> the trace of $\underline{C} = \underline{S}^{\dagger} \underline{S}$ can never be negative. [3 marks]

Verify this result explicitly in the case where

1

$$\underline{S} = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right).$$
 [4 marks]

TURN OVER

PHYS2B72/2005

[10 marks]

2. The matrix \underline{A} is given by

$$\underline{A} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

Verify that one of the eigenvalues is $\lambda_1 = 0$ and that the corresponding eigenvector is $\underline{v}_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\ 1\\ 1 \end{pmatrix}$. [5 marks]

Find the characteristic equation and the two other eigenvalues λ_2 and λ_3 . [4 marks] Find the normalized eigenvectors $\underline{v_2}$ and $\underline{v_3}$ corresponding to λ_2 and λ_3 . [8 marks]

Show that the eigenvectors of \underline{A} are orthogonal.

3. (a) Verify the following vector equations

$$\nabla . (\underline{A} \times \underline{B}) = \underline{B} . (\nabla \times \underline{A}) - \underline{A} . (\nabla \times \underline{B})$$

for the vector functions

$$\begin{array}{rcl} \underline{A} &=& 3y^2 x \underline{\hat{e}}_x + xy \underline{\hat{e}}_y + z^2 \underline{\hat{e}}_z \\ \underline{B} &=& 2x^3 \underline{\hat{e}}_x + 4y z^2 \underline{\hat{e}}_y + y x \underline{\hat{e}}_z. \end{array} \tag{10 marks}$$

(b) The function u(x, t) satisfies the differential equation

$$\left(\frac{\partial^2 u}{\partial t^2}\right) + \alpha^2 u = c^2 \left(\frac{\partial^2 u}{\partial x^2}\right) ,$$

where c and α are real constants.

By seeking a solution of the equation in the separable form $u(x,t) = X(x) \times T(t)$, find the most general solution for which u(0,t) = 0, u(L,t) = 0, and u(x,0) = 0. [10 marks]

PHYS2B72/2005

CONTINUED

[3 marks]

4. (a) Show that the second-order differential equation

$$4x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 0$$

has two solutions of the form

$$y = \sum_{n=0}^{\infty} a_n x^{n+k}, \quad a_0 \neq 0$$

with k = 0 or $k = \frac{1}{2}$.

ļ

Derive the recurrence relation

$$\frac{a_{n+1}}{a_n} = \frac{-1}{2(n+k+1)(2n+2k+1)}$$
 [4 marks]

Show that for $k = \frac{1}{2}$ the explicit form for the solution for y as a function of x is

$$y(x) = \sqrt{x} \left(1 - \frac{1}{6}x + \frac{1}{120}x^2 - \ldots \right).$$
 [3 marks]

Show that for k = 0 the explicit form for the solution for y as a function of x is

$$y(x) = 1 - \frac{1}{2}x + \frac{1}{24}x^2 - \dots$$
 [3 marks]

(b) The recurrence relation for another second-order differential equation is found to be

$$a_{n+1} = \frac{p^2 - n(n-1) - 3}{n+1}a_n.$$

Show, using the d'Alembert ratio test, that unless the parameter p is chosen to make the series terminate it will diverge. Find the value of p for which the series has $a_n = 0$ for $n \ge 4$. [4 marks]

TURN OVER

PHYS2B72/2005

[6 marks]

5. The generating function for the Legendre polynomials is

$$g(x,t) \equiv (1 - 2xt + t^2)^{-1/2} = \sum_{n=0}^{\infty} P_n(x)t^n$$

where $|t| \leq 1$.

(a) By expanding g(x, t) in powers of t, show that

$$P_0(x) = 1, P_1(x) = x, \text{ and } P_2(x) = \frac{1}{2}(3x^2 - 1).$$
 [3 marks]

(b) By differentiating g(x, t) with respect to x, show that the Legendre polynomials satisfy the recurrence relation

$$P_n(x) = P'_{n+1}(x) - 2xP'_n(x) + P'_{n-1}(x).$$
 [6 marks]

- (c) Use the recurrence relation to find the expression for $P'_3(x)$. [3 marks]
- (d) The orthogonality and normalization of the Legendre polynomials is given by

$$\int_{-1}^{+1} P_m(x) P_n(x) \, dx = \frac{2}{2m+1} \, \delta_{mn}.$$

Explain what is meant by the right hand side of the relation.

(e) By expressing the integrand of the following integral in terms of a sum of Legendre polynomials show that

$$\int_{-1}^{+1} \left[\frac{1}{2} \left(1 + \sqrt{3}x \right)^2 - \frac{1}{2} \right]^2 dx = 2.9$$

[5 mark]

[3 marks]

CONTINUED

PHYS2B72/2005

6. If f(x) has a Fourier series expansion of the form

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx ,$$

show, by using the orthonormality of the sine and cosine functions, that the Fourier coefficients are given by

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx ,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx .$$
[7 marks]

The function f(x) is periodic with period 2π . In the interval $-\pi < x < +\pi$, it is given by

$$f(x) = x + \pi$$

Sketch f(x) and show that the function can be expressed as a sum of an even function and an odd function. [2.marks]

Show that the Fourier series of this function is

$$f(x) = \pi + 2\left(\sin x - \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x \dots\right).$$
 [8 marks]

Discuss the behaviour of f(x) at x = 0 and as x tends to π using both the explicit function and the Fourier series. [3 marks]

PHYS2B72/2005

TURN OVER

7. State Stokes' theorem in integral form

١

Calculate the line integral $I = \oint_{\gamma} \underline{W} \cdot \underline{d\ell}$ of the vector

$$\underline{W} = -xy^2 \underline{\hat{e}}_x + xy \underline{\hat{e}}_y + xy \underline{\hat{e}}_z,$$

where the closed contour γ is the perimeter of the square with vertices at (0,0,0), (1,0,0), (1,1,0) and (0,1,0) in that order. [7 marks]

Verify Stokes' theorem for the vector \underline{W} over the surface of a cube with edges of unit length bounded by the contour γ and with z > 0. [7 marks]

Explain without integration why

$$\int_{S_0} (\underline{\nabla} \times \underline{W}) \cdot \underline{\hat{n}} dS_0 = 1$$

where S_0 is the square with vertices (0,0,0), (1,0,0), (1,1,0) and (0,1,0), $\underline{\hat{n}} = +\underline{\hat{e}}_z$ and \underline{W} is the vector given above. [4 marks]

PHYS2B72/2005

END OF PAPER

[2 marks]

. . . .