UNIVERSITY COLLEGE LONDON

University of London

EXAMINATION FOR INTERNAL STUDENTS

For The Following Qualification:-

Physics 2B72: Mathematical Methods

1

13

۲ ۱

COURSE CODE	: PHYS2B72
UNIT VALUE	: 0.50
DATE	: 13-MAY-04
TIME	: 14.30
TIME ALLOWED	: 2 Hours 30 Minutes

TURN OVER

All questions may be attempted. Credit will be given for all work done correctly. Numbers in square brackets show the provisional allocation of marks per sub-section of the question.

1. State the divergence theorem.

٦

2

The tetrahedron shown in the picture has vertices placed at a = (1, 0, 0), b = (0, 1, 0),c = (0, 0, 1).Show that the area of the triangle abc is

> Find the normal \underline{n} to the plane *abc* and show that the equation of the plane is [2 marks]

Evaluate the volume of the tetrahedron

 $V = \int_{V} dV = \int_{0}^{1} dz \int_{0}^{1-z} dy \int_{0}^{1-z-y} dx \; .$ [2 marks]

Verify the divergence theorem for the tetrahedron for the vector field $\underline{F} = \underline{r}$. [5 marks]

Integrate the flux of the vector field

$$\underline{F} = y^2 \underline{\hat{e}}_x + z^2 \underline{\hat{e}}_z$$

1

over the three faces *oab*, *obc*, and *oca*.

Also by integrating ∇F over the volume of the tetrahedron, use the divergence theorem to deduce the flux of \underline{F} through the slanted surface *abc*. [4 marks]

TURN OVER

PHYS2B72/2004

zC equal to $\frac{1}{2}\sqrt{3}$. 0 yx

 $\underline{n} \cdot \underline{r} = x + y + z = 1.$

[3 marks]

[2 marks]

[2 marks]

2. (a) By writing both sides of the equation explicitly in Cartesian coordinates, prove the identity

$$\nabla (\underline{A} \cdot \underline{B}) = (\underline{A} \cdot \underline{\nabla}) \ \underline{B} + (\underline{B} \cdot \underline{\nabla}) \ \underline{A} + \underline{A} \times (\underline{\nabla} \times \underline{B}) + \underline{B} \times (\underline{\nabla} \times \underline{A}) \ ,$$

where \underline{A} and \underline{B} are vector functions of x, y, and z.

(b) The function u(x,t) satisfies the differential equation

$$\left(rac{\partial^2 u}{\partial t^2}
ight) - lpha^2 \, u = c^2 \left(rac{\partial^2 u}{\partial x^2}
ight) \, ,$$

where c and α are real positive constants.

By seeking a solution of the equation in the separable form	
$u(x,t) = X(x) \times T(t)$, find the most general solution for which	
$u(0,t)=0, \ u(L,t)=0, \ ext{and} \ u(x,t) ightarrow 0 \ ext{as} \ t ightarrow \infty.$	[10 marks]
	•

What is the minimum value of α for which a solution exists? [2 marks]

PHYS2B72/2004

CONTINUED

[8 marks]

ĩ

3. (a) The matrices <u>A</u>, <u>B</u>, and <u>D</u> are related by $\underline{D} = \underline{A}\underline{B}$. Given that

$$\underline{A} = \begin{pmatrix} 2 & 4 & 3 \\ 1 & -2 & -2 \\ -3 & 3 & 2 \end{pmatrix} \quad \text{and} \quad \underline{D} = \begin{pmatrix} 10 & -7 & -3 \\ -3 & 8 & -2 \\ 3 & -14 & 7 \end{pmatrix}$$

evaluate \underline{A}^{-1} .

2

Hence derive the value of \underline{B} .

(b) For the matrices

$$\underline{B} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \text{ and } \underline{C} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

calculate \underline{B}^2 and \underline{B}^3 and show that, for non-negative integers n,

$$\underline{\underline{B}}^{2n+1} = 2^{n} \underline{\underline{B}},$$

$$\underline{\underline{B}}^{2n+2} = 2^{n} \underline{\underline{C}}.$$
 [6 marks]

By expanding the exponential in a power series in α , show that

$$\exp\left(\alpha\underline{B}\right) = \underline{I} - \frac{1}{2}\underline{C} + \frac{1}{2}\cosh\left(\alpha\sqrt{2}\right)\underline{C} + \frac{1}{\sqrt{2}}\sinh\left(\alpha\sqrt{2}\right)\underline{B}, \qquad [4 \text{ marks}]$$

where $\cosh x = \sum_{n=0}^{\infty} x^{2n}/(2n)!$

4. The matrix \underline{A} is given by

$$\underline{A} = \begin{pmatrix} -3 & 2i & 2\\ -2i & 1 & -3i\\ 2 & 3i & 1 \end{pmatrix} \cdot$$

Verify that one of the eigenvalues is $\lambda_1 = -2$ and that the corresponding normalised eigenvector is $\underline{v}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ i\\ 1 \end{pmatrix}$. [5 marks]

By showing that the characteristic equation is $\lambda^3 + \lambda^2 - 22\lambda - 40 = 0$, or otherwise, find the other two eigenvalues λ_2 and λ_3 and the associated normalised eigenvectors \underline{v}_2 and \underline{v}_3 .

Show explicitly that these eigenvectors are mutually orthogonal, $\underline{v}_i^{\dagger} \underline{v}_j = 0$ for $i \neq j$. [3 marks] Why should this be so?

Show further that

$$\underline{v}_1 \times \underline{v}_2 = C \, \underline{v}_3^* \, .$$

where the constant C has magnitude one.

PHYS2B72/2004

TURN OVER

[7 marks] [3 marks]

[9 marks]

[1 mark]

[2 marks]

ŧ

5. Show that the second-order differential equation

$$(2x - 2x^2)\frac{d^2y}{dx^2} + (1 - x)\frac{dy}{dx} + 3y = 0$$

has two solutions of the form

$$y = \sum_{n=0}^{\infty} a_n x^{n+k} , \quad a_0 \neq 0$$

with k = 0 or $k = \frac{1}{2}$.

Derive the recurrence relation

$$\frac{a_{n+1}}{a_n} = \frac{(n+k)(2n+2k-1)-3}{(n+k+1)(2n+2k+1)} \,.$$
 [4 marks]

Show that the $k = \frac{1}{2}$ series terminates and find the explicit form for the solution for y as a function of x. [3 marks]

Use the d'Alembert ratio test to determine the range of values of x for which the k = 0 series converges. [3 marks]

Explain why, from the structure of the differential equation, one would expect the solution to <u>either</u> vanish at x = 1 or to have a badly behaved solution at x = 1. [4 marks]

PHYS2B72/2004

CONTINUED

[6 marks]

6. If f(x) has a Fourier series expansion of the form

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos nx + \sum_{n=1}^{\infty} b_n \sin nx$$
,

show, by quoting the orthonormality of the sine and cosine functions, that the Fourier coefficients are given by

$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx ,$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx .$$
[6 marks]

The function f(x) is periodic with period 2π . In the interval $-\pi < x < +\pi$, it is given by

$$f(x) = \begin{cases} \sin x & \text{if } x > 0, \\ -\sin x & \text{if } x < 0. \end{cases}$$

Is f(x) even or odd?

Ż

Show that the Fourier series of this function is

$$f(x) = \frac{2}{\pi} - \frac{4}{\pi} \sum_{\substack{n \text{ even} \\ n \ge 2}}^{\infty} \frac{1}{n^2 - 1} \cos nx .$$
 [8 marks]

Hence write down the Fourier series for the periodic function given by $g(x) = \cos x$ for $0 < x < \pi$ and $g(x) = -\cos x$ for $-\pi < x < 0$. [3 marks]

Use the Fourier series for f(x) at x = 0 to evaluate the sum

$$S = \sum_{\substack{n \text{ even} \\ n \ge 2}}^{\infty} \frac{1}{n^2 - 1} \, .$$

Verify the order of magnitude of your answer by evaluating the sum of the first five terms on a calculator. [2 marks]

You may find the following identity useful:

$$\sin A \cos B = \frac{1}{2} [\sin(A+B) + \sin(A-B)]$$
.

PHYS2B72/2004

TURN OVER

[1 mark]

ł

7. The generating function for the Legendre polynomials is

$$g(x,t) \equiv (1-2xt+t^2)^{-1/2} = \sum_{n=0}^{\infty} P_n(x)t^n$$
,

where $|t| \leq 1$.

- (a) Show that $P_n(1) = 1$. [2 marks]
- (b) Show that $P_n(x) = (-1)^n P_n(-x)$.
- (c) By expanding g(x,t) in powers of t, show that

$$P_0(x) = 1, P_1(x) = x, \text{ and } P_2(x) = \frac{1}{2}(3x^2 - 1).$$
 [3 marks]

[2 marks]

(d) By differentiating g(x,t) with respect to t, show that the Legendre polynomials satisfy the recurrence relation

$$(n+1) P_{n+1}(x) - (2n+1) x P_n(x) + n P_{n-1}(x) = 0.$$
 [5 marks]

- (e) Use the recurrence relation to find the expression for $P_3(x)$. [1 mark]
- (f) Find the values of x satisfying $P_2(x) = 0$ and those satisfying $P_3(x) = 0$. [2 marks]
- (g) Why does orthogonality of the Legendre polynomials require that the solutions for x in part (f) lie in the range -1 < x < +1? [2 marks]
- (h) For $x \gg 1$ the leading term in the Legendre polynomial is

$$P_n(x) = \alpha_n x^n$$
.

Use the recurrence relation to show that

$$\alpha_n = \frac{(2n-1)!!}{n!} ,$$

where
$$(2n-1)!! = (2n-1)(2n-3)\cdots 1$$
 for $n \ge 1$. [3 marks]

END OF PAPER

PHYS2B72/2004