Answer SIX questions from section A and THREE questions from section B.

The numbers in square brackets in the right-hand margin indicate the provisional allocation of maximum marks per sub-section of a question.

SECTION A [Part marks]

- 1. Briefly describe the Davisson-Germer experiment and its implications for our understanding of wave-particle duality. [7]
- 2. Prove that if the complete set of functions ϕ_n are simultaneous eigenfunctions of two Hermitian operators \hat{R} and \hat{Q} then $[\hat{R}, \hat{Q}] = 0$. [7]
- 3. Describe the tunnelling phenomenon of quantum mechanics. [4]
 Briefly discuss a physical process in which it is important.
- 4. Explain the terms **eigenvalue**, **eigenfunction** and **operator**.

 Give an example of an eigenvalue equation other than the Schrödinger equation.

 [5]
- 5. The operators corresponding to components of quantum angular momentum obey the relations $[\hat{L}_i, \hat{L}_j] = i\hbar \hat{L}_k$ (where i, j, k represent a cyclic permutation of x, y, z) and $[\hat{L}_z, \hat{L}^2] = 0$. Discuss the physical significance of these commutation relations and the implications for the eigenfunctions and eigenvalues. [7]
- 6. The wavefunction of a particular quantum particle in a simple harmonic potential is given as u(x) = e^{-αx²/2}. What is meant by the statement that u(x) is not normalised? Explain one important consequence of the eigenfunction not being normalised.
 [3] Give u(x) in normalised form given that,

$$\int_{-\infty}^{\infty} e^{-\beta y^2} dy = \sqrt{\frac{\pi}{\beta}}.$$
 [4]

7. The wavefunction of an electron in hydrogen is given by: $R_{nl}(r) Y_{lm}(\theta, \phi)$. Explain the physical significance of the subscripts n, l, m and give their possible values. What quantum numbers are implied by the notation 4f and how many states correspond to them?

ASTR2B11/2001

PLEASE TURN OVER

[4]

[3]

8. One can model the Zeeman effect by adding a small extra term to the Hamiltonian (in atomic units):

$$\hat{V} = \frac{B}{2}(\hat{L}_z + 2\hat{S}_z).$$

Explain the physical origin of the terms on the right hand side.

A particular atom has been assigned quantum numbers S=0, L=2. How many Zeeman levels would one expect to observe?

SECTION B

- 9. A quantum particle moves in a one-dimensional potential well, with a potential V = 0 for 0 < x < 2b and $V = \infty$ elsewhere.
 - (a) Show that the corresponding wavefunction satisfies the following equation inside the well,

$$\frac{d^2u(x)}{dx} + k^2u(x) = 0.$$

What is the value of k?

- [6](b) By considering appropriate boundary conditions derive the form of the <u>normalised</u> solutions $u_n(x)$ and the values of the eigenvalues E_n . [10]
- (c) For what value(s) of x is one most likely to find the particle if it is in the first excited state? [4]
- 10. (a) The fine-structure splitting for an atom is given by:

$$E_{SO} = \frac{A(L,S)}{2} [J(J+1) - L(L+1) - S(S+1)],$$

where A is a constant for given L and S. Hence derive the Landé interval rule.

- (b) An atom has a set of terms ${}^3D^o$, 3P and 1S . What levels are involved? (List them in spectroscopic notation). [7]
- (c) Sketch a plausible energy level diagram given that the energy $E(^3D^o) > E(^3P) >$ $E(^{1}S)$. Between which terms are transitions forbidden and which are allowed? [7]

ASTR2B11/2001

CONTINUED

[4]

[3]

[6]

11. A one-dimensional potential step is defined by:

Region 1 :
$$x \le 0$$
 , $V = 0$
Region 2 : $x > 0$, $V = V_0$

A particle approaches the step with energy $E > V_0$ from region 1.

(a) Write down model solutions to the Schrödinger equation in terms of reflected amplitudes R and transmitted amplitudes T as well as two wavenumbers k and q relevant to region 1 and 2 respectively, explaining your answers and defining the wavenumbers.

(b) Hence show that T = 2k/(k+q) and R = (k-q)/(k+q). [10]

- (c) Evaluate the probability flux current $j(x) = \frac{\hbar}{2im} (\psi^* \frac{\partial \psi}{\partial x} \psi \frac{\partial \psi^*}{\partial x})$ and show that it is conserved across the two regions [4]
- 12. The operator \hat{L}_z can be expressed in terms of polar angles

$$\hat{L}_z = -i\hbar \frac{\partial}{\partial \phi}.$$

- (a) Derive the normalized eigenfunctions of \hat{L}_z , hence proving that they take the form $\frac{1}{\sqrt{2\pi}}e^{im\phi}$ and obtain the corresponding eigenvalues. [10]
- (b) An electron is described by the following angular wavefunction:

$$u(\theta, \phi) = \frac{1}{4} \sqrt{\frac{15}{\pi}} \sin^2 \theta \cos 2\phi.$$

Re-express u in terms of spherical harmonics given below. Hence give the probability that a measurement will yield the eigenvalue of \hat{L}^2 equal to $6\hbar^2$.

(c) What is the probability that $u(\theta, \phi)$ will yield the eigenvalue of \hat{L}_z (i) equal to $2\hbar$? (ii) equal to zero? [4]

You may use the following:

$$Y_{20}(\theta, \phi) = \sqrt{\frac{5}{16\pi}} (3\cos^2 \theta - 1)$$

$$Y_{2\pm 1}(\theta, \phi) = \pm \sqrt{\frac{15}{8\pi}} \sin \theta \cos \theta e^{\pm i\phi}$$

$$Y_{2\pm 2}(\theta, \phi) = \sqrt{\frac{15}{32\pi}} \sin^2 \theta e^{\pm 2i\phi}$$

ASTR2B11/2001

[6]

[6]

13. The radial Schrödinger equation, in atomic units, for an electron in a hydrogenic ion of nuclear charge Z is

$$\left(\frac{d^2}{dr^2} - \frac{\ell(\ell+1)}{r^2} + \frac{2Z}{r} + 2E\right)F(r) = 0,$$

where E is the total electron energy and ℓ is the orbital angular momentum quantum number.

(a) By making the substitution $\rho = Zr$, show that

$$\left(\frac{d^2}{d\rho^2} - \frac{\ell(\ell+1)}{\rho^2} + \frac{2}{\rho} + \frac{2E}{Z^2}\right) F(\rho) = 0.$$

(b) The series solution of this equation can be written

$$F(\rho) = e^{-\frac{\rho}{\nu}} \rho^{\ell+1} \sum_{k=0}^{\infty} a_k \rho^k,$$

where the coefficients in the summation are related by the recurrence relation

$$k(2\ell+1+k)a_k = \frac{2}{\nu}(\ell+k-\nu)a_{k-1},$$

where $a_0 \neq 0$ and ν is defined by $E = \frac{-Z^2}{2\nu^2}$. Solutions of the radial Schrödinger equation exist which are bounded for all r provided that $\nu = n$, where n is a positive integer. If the solutions are normalised so that

$$\int_0^\infty F^2(r)\mathrm{d}r = 1,$$

show that for the 2s state,

$$F(r) = \left(\frac{Z}{2}\right)^{\frac{1}{2}} (Zr)(1 - \frac{Zr}{2})e^{-Zr/2}.$$

[8]

[4]

[5]

- (c) The Darwin term is a relativistic correction to the energies of the s states in hydrogenic systems whose magnitude is $D=\frac{1}{8}Z\alpha^2\lim_{r\to 0}\left(\frac{F(r)}{r}\right)^2$, where $\alpha=1/137$ is the fine-structure constant. Use the series solution to show that the Darwin correction for a general s state is $D=\frac{1}{8}Z^3\alpha^2a_0^2$, where a_0 is the leading coefficient in the above expansion.
- (d) Calculate the magnitude of the correction for the 2s state in hydrogen-like iron (Z=26) as a fraction of the ionization energy of that state. [3] The following result may be assumed: $\int_0^\infty r^m \mathrm{e}^{-\alpha r} dr = \frac{m!}{\alpha^{m+1}}.$

ASTR2B11/2001

END OF PAPER