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1. A natural satellite moves under the gravitational attraction of a planet and its resulting

path is an ellipse with the planet at one focus. The relationship between the satellite’s
radial distance, r from an origin O at the centre of the planet and its true anomaly,
f, is given in polar coordinates by,

. a(l —e?)
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where a and e are the semi-major axis and eccentricity of satellite’s orbit. The same
orbital path can be described by the equation
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where b = av/1 — €? is the semi-minor axis of the ellipse, (z,y) are the coordinates of
the satellite in a frame with origin, O’, at the centre of the ellipse (midway between
the two foci) and the z-axis lies along the line joining the two foci.

(a) Draw a diagram to illustrate the relationship between the polar coordinate system
with origin O and the cartesian coordinate system with origin O’. Sketch a circle
of radius a centred on the origin O’ and use it to illustrate the relationship between
f and the eccentric anomaly, E. Derive expressions for rcos f and rsin f, and
hence show that

r=a(l —ecosE). (11 marks)

(b) Substitute the result from part (a) in the equation

r= Eg\/0,262 — (r—a)?
r

where n is the mean motion of the satellite, and hence solve it to derive Kepler’s
equation,
M=F—esinFE

where M = n(t — 7) is the mean anomaly and 7 is a constant. (9 marks)

(c) Use an iterative method of the form
Ez'+1 =M + €SinE7;

with Eg = M in order to derive a series solution for Kepler’s equation to express
E as a function of M including terms up to and including O(e?). (8 marks)

(d) Another satellite is discovered orbiting around the same planet. It has negligible
mass and it is observed to have an orbital period of 6 days with a semi-major axis
that is 6 times larger than that of the first satellite. Ignoring any perturbations
from the second satellite, show that the mean anomaly of the first satellite must
be increasing at a rate of one degree every 40v/6 seconds. (5 marks)



2. In the planar, circular restricted three-body problem the equations of motion of the

massless test particle in the frame rotating with unit angular velocity are given by
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where the test particle has rectangular coordinates (z,y) in a frame where the z-axis
is directed along the line joining the two masses, and
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with g1 = my/(m1 + ma), p2 = ma/(my + ms) and it is assumed that mo < my.
The square of the distances from the particle to the masses m; and ms are given by
r? = (z + p2)? + y2, 12 = (z — pu1)? + y? respectively. In this system the unit of
distance is taken to be the constant separation of the two masses.

(a) Derive expressions for U /Oz and OU/dy using the definitions of U, r; and ry
given above. Hence show that the equations of motion have equilibrium solutions
at the points 71 = ro = 1. Draw a sketch showing the location of these two
equilibrium points in relation to the two masses (11 marks)

(b) From the definitions of r; and 73, show that
pari + pary = 2 + % + paps

and hence derive an expression for U that is an explicit function of 7y and 7 only.
(7 marks)

(c) An equilibrium point is located close to mq along the line joining the two masses
such that 71 +72 = 1. Using the new expression for U from part (b), or otherwise,
show that at this equlibrium point 7o must satisfy the equation

p2 _ r3(rj —3ra+3)
p1 (L—re)3(1+ry+12)

and hence show that this equilibrium point is located at an approximate distance

o = (ug/3p1)% from the mass mq, where it is assumed that ms < mq.
(10 marks)

(d) A small spherical satellite of mass ms and physical radius R is in a circular orbit
and in synchronous rotation about a planet of mass m;. Consider a test particle
lying on the equator of the satellite along the line joining the satellite and the
planet centres on the planet side of the satellite. Show that the orbital radius at
which the sum of the excess gravitational or centrifugal force on the particle due
to tidal shear and the centrifugal force due to the satellite’s rotation is balanced
by the gravitational attraction of the satellite is given by R/a. (5 marks)



3. The asteroid Hilda orbits at the 3:2 interior mean motion resonance with the planet
Jupiter with successive conjunctions of the planet and the asteroid occurring at the
asteroid’s perihelion. Jupiter can be assumed to be moving in a circular orbit in the
same plane as Hilda.

(a)

Show that the ratio of the perihelion distance, rp,, to the aphelion distance, 7, of
Hilda can be written as
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where e = 0.2 is the eccentricity of Hilda’s orbit. Sketch the orbits of Hilda and
Jupiter in the inertial, non-rotating frame marking the location of the asteroid’s
perihelion and aphelion. Indicate possible locations of both objects ensuring that
these are consistent with the nature of the resonance. (8 marks)

Sketch the approximate path of Hilda in a frame rotating at a rate equal to the
mean motion of Jupiter. Indicate on your plot all locations where Hilda is at the
perihelion or aphelion of its orbit. (4 marks)

The angular momentum per unit mass of an object orbiting the Sun is given by
h = na?V/1 — e2, where n is the mean motion and a is the semi-major axis. Use
this to obtain an expression for the angular velocity of the planet as a function
of the true anomaly f. By deriving an expression for the angular velocity of
Hilda at its aphelion and equating it to the mean motion of Jupiter, show that
Hilda would be instantaneously stationary at one or more locations in the rotating
frame provided its eccentricity e satisfies the equation

4e® +12¢* +2le =5 =0.
(11 marks)

A detailed analytical study of the motion of the Hilda—Jupiter system requires
an expansion of the disturbing function involving the eccentricities (e and e’) and
inclinations (I and I’) of both objects to the second degree. This implies a total
of eight cosine arguments in the expansion of the disturbing function: two are
associated with the 3:2 resonance and six are associated with the 6:4 resonance.
Use your knowledge of the properties of the disturbing function to write down
each cosine argument, stating clearly the angles involved and the form of the
term in eccentricity and inclination associated with each argument. What is the
relationship, if any, between the coefficients of the angles in the argument and
the powers of eccentricity and inclination in the term?

(10 marks)



4. Images of the outer part of Saturn’s main rings show a series of features associated
with first-order resonances between ring material and the moon Prometheus orbiting
beyond the edge of the ring system. Each resonance has a resonant argument of the
form ¢ = jX + (1 — j)A — @ where )\ is the mean longitude of Prometheus, \ is
the mean longitude of the ring particle, w is the longitude of pericentre of the ring
particle, and 7 is an integer.

(a) Use the supplied sheet of Lagrange’s planetary equations to show that to lowest
order the ring particle’s eccentricity, e varies according to the equation

de m’

a .
— = ——n—Asinp
dt M o
where n is the mean motion of the particle, a is its semimajor axis, a’ is the
semi-major axis of Prometheus, A is a constant, m’ is the mass of Prometheus,

i f Saturn.
and M is the mass of Saturn (11 marks)

(b) With suitable, stated approximations integrate the equation for de/dt to show
that the forced eccentricity associated with this resonance is given by

o — 2(a®/a")(m’ /M)|A]
3(J — 1la — ares|

where a;.s is the semimajor axis of the exact resonance.
(11 marks)

(c) Provide a qualitative explanation of how a satellite in a gap can produce waves on
adjacent rings without the effects of resonance. Use this to explain the phenomena
seen in Saturn’s Encke gap. (11 marks)
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LAGRANGE’S EQUATIONS
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where R is the disturbing function, € is the mean longitude at epoch, and
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