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PHYS2222 
Quantum Physics 

Reading list 
 For general reference the second-year course book: Introduction to the Structure 

of Matter by J.J. Brehm and W.J. Mullin (Wiley, 1989, ISBN 0-471-60531-X).  

10 copies in UCL library,  available from P&A Department.  Referred to as B&M 
in these notes. 

Advantages: suitable for most 2nd-year Physics courses, good integration of 
quantum physics with atomic physics. 

Disadvantages: weak on more formal aspects of quantum mechanics. 

 As a reasonably priced introduction: Quantum Mechanics by A.I.M. Rae (4th 
edition, Institute of Physics Publishing, 2002, ISBN 0 7503 0839 7).   

9 copies in UCL library, available from P&A Department. 

Advantages: cheap, well suited to level of course, covers essentially all the 
material at roughly the right level. 

Disadvantages: not so useful for other courses. 

 As a more advanced book that is also recommended for the third-year quantum 
mechanics course: Quantum Mechanics by B.H. Bransden and C.J. Joachain (2nd 
edition, Prentice Hall, 2000, ISBN 0582-35691-1).   

10 copies in UCL library, available from P&A Department.  Referred to as B&J 
in these notes. 

Advantages: material for 2222 is mostly presented at the start of the book. 
Contains additional material going well beyond 2B22 for further reading.  Useful 
for both 3rd-year and 4th-year courses. 

Disdavantages: coverage of some material (notably spin and emission/absorption 
of radiation) is at a more advanced level than 2222 and is not so useful for this 
course.  Relatively expensive (£41 on Amazon). 
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Prerequisites 
 First-year Mathematics for Physics and Astronomy  (1B45 

and 1B46) or equivalent 
 Material from the second-year maths course (2246) will be 

used after it has been covered in that course 
 Basic relativistic kinematics (from 1B46) will be assumed, 

and basic electromagnetism (field and potential of point 
charge, interaction of magnetic dipole with magnetic field) 
will be used as it is covered in 2201 

2222 and other courses 
 Some limited overlap with 1B23 Modern Physics, 

Astronomy and Cosmology (bur different approach – 2222 
is less descriptive and more rigorous). Areas covered by 
both courses: 

o Wave-particle duality (photoelectric effect, double-
slit experiment) 

o Time-independent Schrődinger equation 
o Significance of wave function and Heisenberg’s 

Uncertainty Principle 
1B23 is not a prerequisite for 2222! 
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Syllabus
1. The failure of classical mechanics [3 lectures] 
Photoelectric  effect,  Einstein’s  equation,  electron  diffraction  and  de  Broglie  relation.  
Compton scattering.  Wave­particle duality, Uncertainty principle (Bohr microscope).   
2. Steps towards wave mechanics [3 lectures] 
Time­dependent and  time­independent Schrödinger equations.  The wave function and its 
interpretation. 
3. One­dimensional time­independent problems [7 lectures] 
Infinite square well potential.  Finite square well.  Probability flux and the potential barrier 
and  step.    Reflection  and  transmission.    Tunnelling  and  examples  in  physics  and 
astronomy.  Wavepackets.  The simple harmonic oscillator. 
4. The formal basis of quantum mechanics [5 lectures] 
The  postulates  of  quantum  mechanics  –  operators,  observables,  eigenvalues  and 
eigenfunctions.  Hermitian operators and the Expansion Postulate.   
5. Angular momentum in quantum mechanics [2 lectures] 
Operators, eigenvalues and eigenfunctions of  ˆ L z  and  ˆ L 2 . 
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Syllabus (contd)

6. Three dimensional problems and the hydrogen atom [4 lectures] 
Separation of variables for a three­dimensional rectangular well.  Separation of space and time 
parts of the 3D Schrödinger equation for a central field.  The radial Schrödinger equation, and 
casting  it  in  a  form  suitable  for  solution  by  series  method.    Degeneracy  and  spectroscopic 
notation. 
7. Electron spin and total angular momentum [3 lectures] 
Magnetic moment of electron due to orbital motion.  The Stern­Gerlach experiment.  Electron 
spin  and  complete  set  of  quantum  numbers  for  the  hydrogen  atom.    Rules  for  addition  of 
angular  momentum  quantum  numbers.    Total  spin and orbital  angular momentum quantum 
numbers S, L, J.  Construct J from S and L.  
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Photo-electric effect, Compton 
scattering

Davisson-Germer experiment, double-
slit experiment

Particle nature of light in 
quantum mechanics

Wave nature of matter in quantum 
mechanics

Wave-particle duality

Time-dependent Schrödinger equation, 
Born interpretation

2246 Maths 
Methods III Time-independent Schrödinger 

equation

Quantum simple 
harmonic oscillator Hydrogenic atom 1D problems

Radial solution
2

2

1
,

2nl

Z
R E

n
 

Angular solution

( , )m
lY  

Postulates: 

Operators,eigenvalues and 
eigenfunctions, expansions in 
complete sets, commutators, 

expectation values, time 
evolution

Angular momentum 
operators

2ˆ ˆ,zL L

E h
h

p




2246

Frobenius 
method

Separation of variables

Legendre 
equation

E n=n 1
2 ℏ0
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Lecture style

• Experience (and feedback) suggests the biggest problems found by 
students in lectures are: 
– Pacing of lectures
– Presentation and retention of mathematically complex material

• Our solution for 2222:
– Use powerpoint presentation via data projector or printed OHP for written 

material and diagrams
– Use whiteboard or handwritten OHP for equations in all mathematically 

complex parts of the syllabus
– Student copies of notes will require annotation with these mathematical 

details
– Notes (un-annotated) will be available for download via website or (for a 

small charge) from the Physics & Astronomy Office
• Headings for sections relating to key concepts are marked with 

asterisks (***)
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1.1 Photoelectric effect
B&M §2.5; Rae §1.1; 
B&J §1.2

Metal plate in a vacuum, irradiated by ultraviolet light, emits 
charged particles (Hertz 1887), which were subsequently shown 
to be electrons by J.J. Thomson (1899).

Electric field E of light exerts force F=-
eE on electrons. As intensity of light 
increases, force increases, so KE of 
ejected electrons should increase.

Electrons should be emitted whatever 
the frequency ν of the light, so long as E 
is sufficiently large

For very low intensities, expect a time lag 
between light exposure and emission, 
while electrons absorb enough energy to 
escape from material

Classical expectations

Hertz J.J. Thomson

I

Vacuum 
chamber

Metal 
plate

Collecting 
plate

Ammeter

Potentiostat

Light, frequency ν

http://images.google.co.uk/imgres?imgurl=br.geocities.com/saladefisica3/fotos/hertz.gif&imgrefurl=http://br.geocities.com/saladefisica3/&h=302&w=223&prev=/images%3Fq%3Dhertz%26svnum%3D10%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26sa%3DG
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Photoelectric effect (contd)***

  (1.1)E h

                

The maximum KE of an emitted electron is then predicted to be:

 
  

Maximum KE of ejected electrons is 
independent of intensity, but 
dependent on ν

For ν<ν0 (i.e. for frequencies below 
a cut-off frequency) no electrons 
are emitted

There is no time lag.  However, rate 
of ejection of electrons depends on 
light intensity.

Einstein’s 
interpretation (1905): 
light is emitted and 
absorbed in packets 
(quanta) of energy 

max   (1.2)K h W 
Work function: minimum energy 
needed for electron to escape 
from metal (depends on 
material, but usually 2-5eV)

Planck constant: 
universal constant of 
nature

Einstein

Millikan

Verified in detail 
through 
subsequent 
experiments by 
Millikan

Actual results:

An electron absorbs a 
single quantum in 
order to leave the 
material

h=6.63×10−34 Js
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Photoemission experiments today

Modern successor to original photoelectric 
effect experiments is ARPES (Angle-
Resolved Photoemission Spectroscopy)

Emitted electrons give information on 
distribution of electrons within a material as 
a function of energy and momentum
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Frequency and wavelength for 
light***

2 2 2 2 4
0E p c m c 

Relativistic relationship between a 
particle’s momentum and energy:

For massless particles 
propagating at the speed of light, 
becomes

2 2 2E p c

Hence find relationship 
between momentum p and 
wavelength λ:

E=c∣ p∣

h=c∣ p∣

∣ p∣=
h
c

=c

∣ p∣= h


But:

(For light.)
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1.2 Compton scattering

X-ray source

Target

Crystal 
(selects 
wavelength)

Collimator 
(selects angle)

θ

Compton (1923) measured scattered intensity of X-rays (with well-defined wavelength) 
from solid target, as function of wavelength for different angles.

Result: peak in the wavelength 
distribution of scattered radiation shifts to 
longer wavelength than source, by an 
amount that depends on the scattering 
angle θ (but not on the target material)

A.H. Compton, Phys. 
Rev. 22 409 (1923)

Detector

B&M §2.7; Rae §1.2; 
B&J §1.3

Compton
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Compton scattering (contd)

Compton’s explanation: “billiard ball” collisions between 
X-ray photons and electrons in the material

Conservation of energy: Conservation of momentum:

θ

φ

p’

Classical picture: oscillating electromagnetic field would cause oscillations 
in positions of charged particles, re-radiation in all directions at same 
frequency and wavelength as incident radiation

p

Electron

Incoming photon

Before After

pe

Photon

Frequency 

hme c2=h ' pe
2 c2me

2c4
1
2

Write in terms of momentum:

pcme c2= p ' c pe
2 c2me

2 c4
1
2

 p− p ' cme c2= pe
2 c2me

2 c4
1
2

 p− p' 2 c2me
2 c42 p− p ' me c3= pc

2me
2 c4

 p− p ' 22 p− p ' me c= pe
2

In electrons initial rest frame:
p= p ' pe

pe= p− p '

∣ pe
2∣= p− p '  .  p− p ' =∣ p2∣∣p ' 2∣−2∣ p∣∣ p '∣ cos

∣ pe
2∣= p− p ' 22 1−cos pp '
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Compton scattering (contd)

  (1.3)
h

p



Assuming photon 
momentum related to 
wavelength:

' (1 cos )  (1.4)
e

h

m c
    

‘Compton wavelength’ 
of electron (0.0243 Å)

Equate above for pe
2 :

 p− p ' 22 p− p' me c= p− p ' 221−cos pp'
⇒ p− p' me c=1−cos pp'

⇒me c  1
p'
− 1

p
=1−cos

⇒
me c

h
 '−=1−cos
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Puzzle

What is the origin of the component of 
the scattered radiation that is not 
wavelength-shifted?

Second peak at original  due 
to nuclei collisions.

Substitute: −
ℏ2

2m
2 e x=Eex ⇒ −

ℏ2

2m
2=E ⇒ 2=−

2mE

ℏ2

⇒  Assuming E0 RHS is -ve   is imaginary.

=±ik where k 2=
2mE

ℏ2
 or 
ℏ2 k 2

2m
=E k is DeBroglie wave-number. p=ℏ k
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Wave-particle duality for light***
“ There are therefore now two theories of light, both indispensable, and - as one 
must admit today despite twenty years of tremendous  effort on the part of 
theoretical physicists - without any logical connection.”  A. Einstein (1924)

•Light exhibits diffraction and interference phenomena that 
are only explicable in terms of wave properties

•Light is always detected as packets (photons); if we look, we 
never observe half a photon

•Number of photons proportional to energy density (i.e. to 
square of electromagnetic field strength)
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1.3 Matter waves***
“As in my conversations with my brother we always arrived at the conclusion that in 
the case of X-rays one had both waves and corpuscles, thus suddenly - ... it was 
certain in the course of summer 1923 - I got the idea that one had to extend this 
duality to material particles, especially to electrons. And I realised that, on the one 
hand, the Hamilton-Jacobi  theory pointed somewhat in that direction, for it can be 
applied to particles and, in addition, it represents a geometrical optics; on the other 
hand, in quantum phenomena one obtains quantum numbers, which are rarely found 
in mechanics but occur very frequently in wave phenomena and in all problems 
dealing with wave motion.”  L. de Broglie

De Broglie

Proposal: dual wave-particle nature of radiation 
also applies to matter.  Any object having 
momentum p has an associated wave whose 
wavelength λ obeys

Prediction: crystals 
(already used for X-
ray diffraction) might 
also diffract particles2

 (wavenumber)k





B&M §4.1-2; Rae §1.4; 
B&J §1.6

 ℏ= h
2 p= h


=ℏ k
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Electron diffraction from crystals
Davisson G.P. Thomson

Davisson, C. J., 
"Are Electrons 
Waves?," Franklin 
Institute Journal 
205, 597 (1928) 

The Davisson-Germer experiment 
(1927): scattering a beam of 
electrons from a Ni crystal

At fixed accelerating voltage (i.e. fixed 
electron energy) find a pattern of pencil-
sharp reflected beams from the crystal

At fixed angle, find sharp peaks in intensity 
as a function of electron energy

G.P. Thomson performed similar interference 
experiments with thin-film samples

θi

θr
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Electron diffraction from crystals 
(contd)

Modern Low Energy 
Electron Diffraction 
(LEED): this pattern of 
“spots” shows the  beams 
of electrons produced by 
surface scattering from 
complex (7×7) 
reconstruction of a silicon 
surface

Lawrence 
Bragg

William Bragg 
(Quain Professor 
of Physics, UCL, 
1915-1923)

Interpretation used similar ideas to those pioneered for scattering 
of X-rays from crystals by William and Lawrence Bragg

a

θi

θr

cos ia 

cos ra 

Path difference:

Constructive interference when

Note difference from usual “Bragg’s 
Law” geometry: the identical scattering 
planes are oriented perpendicular to 
the surface

Note θi and θr not 
necessarily equal

Electron scattering 
dominated by surface 
layers

a cosr−a cosi

a cosr−cosi

a cosr−cosi=n
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The double-slit interference 
experiment

sind 

Originally performed by Young (1801) with light.  Subsequently also performed 
with many types of matter particle (see references).

D

θ
d

Detecting 
screen 
(scintillators or 
particle 
detectors)

Incoming beam of 
particles (or light)

y

Alternative method 
of detection: scan 
a detector across 
the plane and 
record arrivals at 
each point
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Results
Neutrons, A 
Zeilinger et al. 1988 
Reviews of Modern 
Physics 60 1067-
1073 

He atoms: O Carnal and J Mlynek 
1991 Physical Review Letters 66 
2689-2692 

C60 molecules: M 
Arndt et al. 1999 
Nature 401 680-
682 

With multiple-
slit grating

Without grating

Fringe visibility 
decreases as 
molecules are 
heated. L. 
Hackermüller et 
al. 2004 Nature 
427 711-714 
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Double-slit experiment: interpretation
Interpretation: maxima and minima arise from alternating constructive and 
destructive interference between the waves from the two slits 

Spacing between maxima:

Example: He atoms at a temperature 
of 83K, with d=8μm and D=64cm

Constructive interference:
d sin=n

⇒nth maximum occurs at:
d sinn=n

For small  ,sin≈tan 

n≈
n
d

⇒Maximum at yn=D tan n≈Dn≈
nD

d

⇒Spacing at 
D
d

Expect: 
p2

2m
=3

2
K BT ⇒ p=4.8×10−24 Ns⇒= h

p
=1.03 Å

⇒ Spacing =
D
d
=8.24×10−6 m
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Double-slit experiment: bibliography
Some key papers in the development of the double-slit experiment during the 
20th century: 
• Performed with a light source so faint that only one photon exists in the 

apparatus at any one time (G I Taylor 1909 Proceedings of the Cambridge 
Philosophical Society 15 114-115) 

• Performed with electrons (C Jönsson 1961 Zeitschrift für Physik 161 454-
474, translated 1974 American Journal of Physics 42 4-11) 

• Performed with single electrons (A Tonomura et al. 1989 American Journal 
of Physics 57 117-120) 

• Performed with neutrons (A Zeilinger et al. 1988 Reviews of Modern 
Physics 60 1067-1073) 

• Performed with He atoms (O Carnal and J Mlynek 1991 Physical Review 
Letters 66 2689-2692) 

• Performed with C60 molecules (M Arndt et al. 1999 Nature 401 680-682) 
• Performed with C70 molecules, showing reduction in fringe visibility as 

temperature rises so molecules “give away” their position by emitting 
photons (L. Hackermüller et al. 2004 Nature 427 711-714) 

An excellent summary is available in Physics World (September 2002 issue, 
page 15) and at http://physicsweb.org/ (readers voted the double-slit 
experiment “the most beautiful in physics”). 
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Matter waves: key points***

• Interference occurs even when only a single particle (e.g. photon or electron) in 
apparatus, so wave is a property of a single particle 
– A particle can “interfere with itself”

• Wavelength unconnected with internal lengthscales of object, determined by 
momentum

• Attempt to find out which slit particle moves through causes collapse of 
interference pattern (see later…)

•Particles exhibit diffraction and interference phenomena that 
are only explicable in terms of wave properties

•Particles always detected individually; if we look, we never 
observe half an electron

•Number of particles proportional to….???

Wave-particle duality for matter particles 
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1.4 Heisenberg’s gamma-ray microscope and a first look at the 
Uncertainty Principle

y

The combination of wave and particle pictures, and in particular the significance of 
the ‘wave function’ in quantum mechanics (see also §2), involves uncertainty: we 
only know the probability that the particle will be found near a particular location. 

θ/2

Light source, 
wavelength λ

Particle

Lens, having angular 
diameter θ

Screen forming 
image of particle

Resolving power of lens:
Heisenberg

B&M §4.5; Rae §1.5; B&J §2.5 (first part only)

 y

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Heisenberg’s gamma-ray microscope and the Uncertainty 
Principle***

Range of y-momenta of photons after 
scattering, if they have initial momentum p:

θ/2

p

p

Heisenberg’s Uncertainty 
Principle

Y-component of  momentum 
after scattering.

− psin 2  p y psin 2 
⇒ Partice momentum must lie
in the same range:

 p y=2psin 2 ≃ p

Remember resolution power of
lens from classical optics:

 y



 y p yh

(Assuming magnitude of 
p unchanged i.e. 
Neglecting Compton 
effect.)

(Small angle/small lens)

px

P y

 y pyh
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2.1 An equation for the matter waves: the time-
dependent Schrődinger equation***

( , )x t

wave velocityv 

Classical wave equation (in 
one dimension):

Can we use this to describe the 
matter waves in free space?

e.g. Transverse waves on 
a string:

x

( , ) wave displacement (in 1d)x t 

Rae §2.1, B&J §3.1, B&M §5.1

2
 x2 =

1
2

2
 t 2
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An equation for the matter waves (2)
Seem to need an equation that 
involves the first derivative in 
time, but the second derivative in 
space

(for matter waves in free space)

( , ) is "wave function" associated with matter wavex t

Put:  x , t =Aei kx− t 


d 2
dx2 =−k2 Aei kx− t  ;

d
dt
=−i Aei  kx− t 

⇒−i=−k2

We want the energy to be 
p2

2m
⇒ ℏ=

ℏ k 2

2m
So choose   so this is true.

⇒−i
ℏ k 2

2m
=−k2

⇒= 2m
i ℏ

So, wave equation is:

2m
i ℏ

d
dt
=

d 2
dx2

Multiplying bothsides by 
−ℏ2

2m 

Try:

 t
=
2
 x2

i ℏ

 t
=−

ℏ2

2m
2
 x2
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An equation for the matter waves (3)
2

( , )
2

p
E V x t

m
 For particle with potential energy  V(x,t), 

need to modify the relationship between 
energy and momentum:

Suggests corresponding modification to 
Schrődinger equation:

Time-dependent Schrődinger equation

Total energy = kinetic energy + potential energy

Schrődinger

We had: i ℏ
d
dt
=
−ℏ2

2m
d 2
dx2

LHS: Gives ℏ  for a plane wave.

RHS: Gives 
ℏ k 2

2m
  for a plane wave.

⇒Try adding a term V x , t   on RHS.

i ℏ

 t
=−

ℏ2

2m
2
 x2V  x ,t 
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The Schrődinger equation: notes

•This was a plausibility argument, not a derivation.  We believe the Schrődinger 
equation to be true not because of this argument, but because its predictions agree 
with experiment.

•There are limits to its validity.  In this form it applies to

•A single particle, moving in one direction, that is

•Non-relativistic (i.e. has non-zero rest mass and velocity very much below c)

•The Schrődinger equation is a partial differential equation in x and t (like classical 
wave equation)

•The Schrődinger equation contains the complex number i.  Therefore its solutions 
are essentially complex (unlike classical waves, where the use of complex numbers 
is just a mathematical convenience)

•Positive i is merely a convention.
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The Hamiltonian operator

Can think of the RHS of the Schrődinger equation as a 
differential operator that represents the energy of the 
particle.

This operator is called the Hamiltonian of the 
particle, and usually given the symbol

Hence there is an alternative (shorthand) form 
for time-dependent Schrődinger equation:

Ĥ

Kinetic 
energy 
operator

Potential 
energy 
operator

i ℏ

 t
=−

ℏ2

2m
2
 x2V  x ,t 

[− ℏ2

2m
d2

d x2
 V x , t ]≡ H

i ℏ

 t
= H
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2.2 The significance of the wave function***

2 *   2
( , )     (2.6)x t x

Ψ is a complex quantity, so what can be its significance for the results 
of real physical measurements on a system?

Remember photons: number of photons per unit volume is 
proportional to the electromagnetic energy per unit volume, 
hence to square of electromagnetic field strength.

Postulate (Born interpretation): probability of finding particle in a small 
length δx at position x and time t is equal to

Note: |Ψ(x,t)|2  is real, so probability is also real, as required.

Total probability of finding particle between 
positions a and b is

a b

|Ψ|2

x

δx

Born

Rae §2.1, B&J §2.2, B&M §5.2

∑
x=a

b

∣ x , t ∣2 x  x0 ∫
a

b

∣ x , t ∣2 dx
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Example
Suppose that at some instant of time a particle’s wavefunction is

What is:

(a) The probability of finding 
the particle between x=0.5 and 
x=0.5001?

(b) The probability per unit 
length of finding the particle 
at x=0.6?

(c) The probability of finding 
the particle between x=0.0 and 
x=0.5?

Probability: ∣∣2 x

With: x=0.5, =1, ⇒ ∣∣2=1

⇒ Probability =1 x 10−4

Probability for unit length: ∣∣2

= 1.44

Total probability =∫
0

0.5

∣∣2 x

= ∫
0

0.5

4x2 x=0.167

 x , t {2x (For 0x0.909)
0 (Otherwise) }
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Normalization
Total probability for particle to be anywhere should be one (at 
any time):

Suppose we have a solution to the 
Schrődinger equation that is not 
normalized,  Then we can

•Calculate the normalization integral

•Re-scale the wave function as

(This works because any solution to the 
S.E., multiplied by a constant, remains a 
solution, because the equation is linear and 
homogeneous)

Normalization condition

Alternatively: solution to Schrödinger equation contains an arbitrary 
constant, which can be fixed by imposing the condition (2.7) 

N=∫
−∞

∞

∣∣2 x

x , t  N
−1

2 x , t 

So: ∫
−∞

∞

∣new∣
2 x=∫

−∞

∞ ∣∣2

N
 x

= 
N
N
=1

∫
−∞

∞

∣ x , t ∣2 dx=1
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Normalizing a wavefunction - example
Suppose that at some time we have the following form to the wave-function:

 x , t {  a2−x2  for −axa
0  otherwise }

xa−a

Normalisation integral: 

N=∫
−∞

∞

∣x , t ∣2 x=∫
−a

a

x , t 2

= ∫
−a

a

a2−x2 x=[ a2 x− x3

3 ]−a

a

= 
2a3

3
−−2a3

3 =4a3

3

This is not, in general, equal to 
1. Therefore  is not correctly 
normalised.  To get a correctly 
normalised wave-function, take:

 x , t = 3a3

4
 a2−x2
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2.3 Boundary conditions for the wave-function

The wavefunction must:

1. Be a continuous and single-valued function 
of both x and t (in order that the probability 
density be uniquely defined)

2. Have a continuous first derivative (unless the 
potential goes to infinity) 

3. Have a finite normalization integral.

Rae §2.3, B&J §3.1



x

x

x

Multivalued.

Unacceptable 

Discontinuous.

Discontinuous. 

Change in 
d
dx

 only

allowed if potential ±∞

0∫
−∞

∞

∣∣2 x∞
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2.4 Time-independent Schrődinger 
equation***

Suppose potential V(x,t) (and hence force on 
particle) is independent of time t:

LHS involves only 
variation of Ψ with t

RHS involves only variation of Ψ with 
x (i.e. Hamiltonian operator does not 
depend on t)

Look for a solution in which the time and 
space dependence of Ψ are separated:

Substitute:

Rae §2.2, B&J §3.5, B&M §5.3

i ℏ x , t  dT
dt
=−

ℏ2

2m
T t 

d 2
dx2 V  x x T t 

Divide by  xT t   :
i ℏ
T

dT
dt
=−

ℏ2

2m
d 2
dx2 V  x

i ℏ
T

dT
dt
=−

ℏ2

2m
d 2
dx2

V  x =E
Independent 
of position x.

Independent of 
time t.

Equal to constant 
E as both sides are 
independent of 
each other.

i ℏ

 t
=−

ℏ2

2m
2
 x2V  x 

x , t = x T t 
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Time-independent Schrődinger equation 
(contd)

Solving the time equation:

The space equation becomes:

Time-independent Schrődinger equation

i ℏ
T

dT
dt
=E ⇒ i ℏ dT

dt
=ET

Linear ordinary differential equation with constant coefficients.
Try: T=Aet ⇒ Substitute.

i ℏ=E ⇒ =− i E
ℏ

Solution is: T t =e
− iEt
ℏ

−
ℏ2

2m
d 2
dx2

V  x=E

Now multiply by   to get the final version.

−
ℏ2

2m
d2
d x2V  x=E or H=E
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Notes
• In one space dimension, the time-independent Schrődinger equation is an 

ordinary differential equation (not a partial differential equation)
• The sign of i in the time evolution is determined by the choice of the sign of i in 

the time-dependent Schrődinger equation
• The time-independent Schrődinger equation can be thought of as an eigenvalue 

equation for the Hamiltonian operator:
Operator × function = number × function

(Compare Matrix × vector = number × vector)   [See 2246]
• We will consistently use uppercase Ψ(x,t) for the full wavefunction (time-

dependent Schrődinger equation), and lowercase ψ(x) for the spatial part of the 
wavefunction when time and space have been separated (time-independent 
Schrődinger equation)

• Probability distribution of particle is now independent of time (“stationary 
state”): 

Ĥ E 

For a stationary state we can use 
either ψ(x) or Ψ(x,t) to compute 
probabilities; we will get the same 
result.

∣ x ,t ∣2=∣e
−i E t
ℏ  x∣

2

=∣e
−i E t
ℏ ∣

2

∣ x ∣2

=∣ x∣2
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2.6 SE in three dimensions
Ĥ E To apply the Schrődinger equation in the real (three-dimensional) 

world we keep the same basic structure:

BUT

Wavefunction and potential energy are now 
functions of three spatial coordinates:

Kinetic energy now involves three 
components of momentum

Interpretation of wavefunction: 

Rae §3.1, B&J §3.1, B&M §5.1

 x , t   x , y , z , t orr , t 
 x   x , y , z orr 

V  x  V x , y , z , t or V r 

p2

2m


p x
2 p y

2 p z
2

2m

⇒ −
ℏ2

2m
2

 x2
 −

ℏ2

2m [ 2

 x2

2

 y2

2

 z 2 ]=− ℏ2

2m
∇ 2

∣ x , y , z , t ∣2V  = Probability of finding particle 
in a small volume dV around 
(x, y, z)

⇒∣∣2  = Probability per unit 
volume.

i ℏ

 t
= H
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Puzzle

( , ) exp[ ( )]x t i kx t  

2 2 2 2 4
0E p c m c 

The requirement that a plane wave

plus the energy-momentum relationship for free-non-relativistic particles

led us to the free-particle Schrődinger equation.

Can you use a similar argument to suggest an equation for free relativistic 
particles, with energy-momentum relationship: 

2

2

p
E

m


Einstein: E=ℏ DeBroglie: p=ℏ k

E2=−
2
 t 2 ℏ

2 p2=−
2
 x2 ℏ

2

⇒Try: −ℏ2 
2
 t 2 =−ℏ

2 c2 
2
 x2 m0

2 c4 (Klein-Gordon equation.)
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3.1 A Free Particle
Free particle: experiences no forces so potential energy independent 
of position (take as zero)

Time-independent Schrődinger 
equation:

Linear ODE with 
constant coefficients so 
try 

exp( )x 

General solution:

Substitute: −
ℏ2

2m
2 e x=Eex ⇒ −

ℏ2

2m
2=E ⇒ 2=−

2mE

ℏ2

⇒  Assuming E0 RHS is -ve   is imaginary.

=±ik where k2=
2mE

ℏ2
 or 
ℏ2 k2

2m
=E k is DeBroglie wave-number. p=ℏ k

x=CeikxDe−ikx  ( C  and D  are constants.) 
 = C cos kx i sin kxD coskx−i sin kx
 = AcoskxB sin kx  where: A=CD  , B=i C−D 

−
ℏ2

2m
d 2
d x2=E
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3.1 A Free Particle (Cont.)
Combine with time dependence to 
get full wave function:

 x , t =x e
iEt
ℏ =CeikxDe−ikxe

i
Et
ℏ

 = C e
i kx−Et

ℏ

 D e

i kx− Et
ℏ


Travelling wave 
moving to the right.

Travelling wave 
moving to the left.

t  x t  −x
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Notes

• Plane wave is a solution (just as well, since our plausibility 
argument for the Schrődinger equation was based on this 
being so)

• Note signs: 
– Sign of time term (-iωt) is fixed by sign adopted in time-dependent 

Schrődinger Equation
– Sign of position term (±ikx) depends on propagation direction of 

wave

• There is no restriction on the allowed energies, so there is a 
continuum of states
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3.2 Infinite Square Well
Consider a particle confined to a finite 
length –a<x<a by an infinitely high 
potential barrier

V(x)

x

-a a

0V 

No solution in barrier region (particle would 
have infinite potential energy).

In well region:

Rae §2.4, B&J §4.5, 
B&M §5.4

Boundary conditions:

Continuity of ψ at x=a:

Continuity of ψ at x=-a:

Note discontinuity in dψ/dx 
allowable, since potential 
is infinite

−
ℏ2

2m
2
 x2

=E As for free particle.

⇒ x=AcoskxB sin kx  With: k 2=2mE

ℏ2

a=0⇒ AcoskaB sin ka=0

−a=0⇒ Acos −kaB sin −ka=0
or A coska−B sin ka=0

 Since: cos−=cos
Even function.

sin −=−sin 
Odd function. 

V=∞ V=∞
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Infinite square well (2)
Add and subtract these 
conditions:

Even solution: ψ(x)=ψ(-x)

Odd solution: ψ(x)=-ψ(-x)

Energy:

Adding gives: 2A cos ka=0
Subtracting gives: 2Bsin ka=0
Either, a) Put B=0  and cos ka=0

⇒ ka=
n
2

n=1,3,5, 7....

⇒ k=
n
2a

,  x=Acos kx

Or, b) Put A=0  and sin ka=0

⇒ ka=
n
2

n=2, 4,6,8. ...

⇒ k=
n
2a

,  x=B sin kx

Same Schrödinger equation for particle in box as for particle in free space.
→ Same relation between E  and k.

⇒E=
ℏ2 k2

2m
=

n22ℏ2

2m 2a 2
E=

n22ℏ2

8ma2
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Infinite well – normalization and notes

Notes on the solution:
• Energy quantized to particular values (characteristic of bound-state problems in quantum 

mechanics, where a particle is localized in a finite region of space.
• Potential is even under reflection; stationary state wavefunctions may be even or odd (we say 

they have even or odd parity)
• Compare notation in 1B23 and in books:

– 1B23: well extended from x=0 to x=b
– Rae and B&J: well extends from x=-a to x=+a (as here)
– B&M: well extends from x=-a/2 to x=+a/2
(with corresponding differences in wavefunction)

Normalization: Need to choose constants so  is normalised. (i.e: Total over integral is 1).

Even soln.

∫
−a

a

∣∣2 x=1⇒∫
−a

a

∣A∣2 1
2
[1cos2kx] x

⇒
∣A∣2

2 [ x
1

2k
sin 2kx]

−a

a

=1

k=
n
2a

( n  odd.)⇒sin ±2ka=sin ±n=0

⇒RHS=∣A∣2 xa⇒Choose A  so...∣A∣2= 1
a

 A= 1

 a
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The infinite well and the Uncertainty 
Principle

Position uncertainty in well:

Momentum uncertainty in lowest state from classical argument (agrees 
with fully quantum mechanical result, as we will see in §4)

Compare with Uncertainty 
Principle:

Ground state close to 
minimum uncertanty

 x≃2a (We know the particle is inside the box.)

State with n = 1 corresponds to a particle bouncing back and forth in the well. 
Momentum will be alternately: 

±ℏ k  or ±
ℏ
2a

⇒Momentum uncertainty:  p=2ℏ k=
ℏ
a
= h

2a

So:  x p=2a
h

2a
=h
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3.3 Finite square well
Now make the potential well 
more realistic by making the 
barriers a finite height V0

V(x)

x

-a a

V0

I II III

Region I: Region II: Region III:

Rae §2.4, B&J §4.6

−
ℏ2

2m
2
 x2

V 0=E

Try:  x =e x

−
ℏ22

2m
V 0=E

ℏ22

2m
=V 0−E 0

 is real.

=± 2=
2m V 0−E 

ℏ2

⇒=C e xD e− x

D is not normalisable so decaying 
term C is only term allowed.  D = 0

−
ℏ2

2m
2
 x2

=E

=Acos kxB sin kx

k 2= 2mE

ℏ2

Free particle solutions apply:

−
ℏ2

2m
2
 x2

V 0=E

⇒=C ' e xD ' e x

( same as in Region 1.)

Decaying term forbidden.
Growing term allowed.

=D ' e− x

Assume: 0EV 0
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Finite square well (2)

x a 

Match value and derivative of 
wavefunction at region boundaries:

Add and subtract:

x a 

Match ψ:

Match dψ/dx:
Acos ka −Bsin ka=C e−a

kAsin ka kB coska =C e−a

Acos ka Bsin ka=D e−a

−kAsinkakB coska=−D e−a

2A cos ka =CDe−a

2Bsin ka=D−C e−a
2 B cos ka=C−De−a

2 Asin ka=CDe−a
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Finite square well (3)
Divide equations:

Must be satisfied simultaneously:

Cannot be solved algebraically.  Convenient form for graphical solution:

k tan ka= (Unless A=0 and C=−D )
k cot ka=−k (Unless B=0 and C=D )

Either: k tan ka= and B=0 , C=D (Even solution)
Or: k cot ka=− and A=0 , C=−D (Odd solution)

k &  are related by the requirement:
ℏ2

2m
k22=V 0

⇒ k22=k 0
2 Where:  k0

2=
2 m V 0

ℏ2

 Even solution  k tan ka =k0
2−k2

Odd solution  k cot ka=−k0
2−k2

⇒ Search for intersections of  y=k tan ka or  y=k cot ka  with a circle  y=±k0
2−k2
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Graphical solution for finite well

-5
-4
-3
-2
-1
0
1
2
3
4
5

0 5 10

k

ktan(ka)

sqrt(k0^2-k^2)

kcot(ka)

-sqrt(k0^2-k^2)

k0=3, a=1

The radius of the circle 
corresponds to the 
depth of the well.
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Notes
• Penetration of particle into “forbidden” region where V>E 

(particle cannot exist here classically)
• Number of bound states depends on depth of potential well, 

but there is always at least one  (even) state
• Potential is even function, wavefunctions may be even or odd 

(we say they have even or odd parity)

• Limit as V0→∞:

k0∞ , circle becomes very large.

⇒ Solutions at  ka=
n
2

 (as for an infinite well.)
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Example: the quantum well

EsakiKroemer

Quantum well is a “sandwich” made of two different semiconductors in which the energy 
of the electrons is different, and whose atomic spacings are so similar that they can be 
grown together without an appreciable density of defects:

Electron potential 
energy

Position

Now used in many electronic devices (some 
transistors, diodes, solid-state lasers)

Material A 
(e.g. AlGaAs) Material B (e.g. GaAs)
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3.4 Particle Flux
In order to analyse problems involving 
scattering of free particles, need to understand 
normalization of free-particle plane-wave 
solutions.

This problem is related to Uncertainty Principle:

Momentum is completely defined

Position completely undefined; 
single particle can be anywhere 
from -∞ to ∞, so probability of 
finding it in any finite region is 
zero

Conclude that if we try to 
normalize so that

will get A=0.

Rae §9.1; B&M 
§5.2, B&J §3.2

∫
−∞

∞

∣Aei k x− t ∣2 dx=∫
−∞

∞

∣A∣2 dx=∞

∫
−∞

∞

∣∣2 dx=1
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Particle Flux (2)
More generally: what is rate of change of 
probability that a particle exists in some region 
(say, between x=a and x=b)?

xa b

Use time-dependent Schrődinger equation:


 t∫a

b

∗dx=∫
a

b

[∗ 
 t


∗

 t ]dx

i ℏ 
 t
=[− ℏ2

2m
2

 x2
V ] ; i ℏ 

∗

 t
=[− ℏ2

2m
2

 x2
V ]∗

⇒∫
a

b { 1
i ℏ
∗ [− ℏ2

2m
2

 x2V ]− 1
i ℏ
 [− ℏ2

2m
2

 x2V ]∗}dx

=
1
i ℏ
−
ℏ2

2m
∫

a

b [∗ 
2
 x2 −

2∗

 x2 ]dx

=
i ℏ
2m∫a

b [∗ 
2
 x2 −

2∗

 x2 ]dx
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Particle Flux (3)
Integrate by parts:

xa b

Interpretation:
Flux entering 
at x=a

Flux leaving 
at x=b

Note: a wavefunction that is 
real carries no current

Note: for a stationary state can use either ψ(x) or Ψ(x,t) 

d
dt∫a

b

∗ dx=
i ℏ
2m [∗ d

dx
−

d∗

dx ]
a

b

−
i ℏ
2m∫a

b

{d∗

dx
d
dx
−

d
dx

d∗

dx }dx

=
i ℏ
2m ∗ d

dx
−

d∗

dx ∣∣x=b

−
iℏ
2m ∗ d

dx
−

d∗

dx ∣∣ x=a

Flow of probability leaving at x = b Flow of probability entering at x = a

Particle flux at position  x :

 x=−
i ℏ
2m [∗ 

 x
−

∗

 x ]
 or   x =

ℏ
m

Im [∗ 
 x ]
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Particle Flux (4)
Sanity check: apply to free-particle 
plane wave.

# particles passing x per unit time = # particles per unit length × velocity
Makes sense:

Wavefunction describes a “beam” of particles.

 x , t =Aei k x− t  ; ∗=A∗ e−i k x− t 


 x
=ikA ei k x− t  ;

∗

 x
=−ikA∗e−i k x− t 

⇒ Flux x =−
i ℏ
2m

[A∗ e−i k x− t ikA ei k x− t −A ei k x− t −ikA∗ e−i  k x− t ]

=− i ℏ
2m
[2ikAA∗ ]=− i ℏ

2m
[2ik∣A∣2 ]

=
∣A∣2 ℏ k

m

Two common normalising methods:
1) One particle per unit length.

2)One particle per unit time.

⇒∣A∣2=1

⇒
∣A∣2 ℏ k

m
=1

We will use this method.
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3.5 Potential Step
Consider a potential which rises suddenly 
at x=0:

x

V(x)

0

V0

Case 1: E<V0  (below step)

x<0 x>0

Boundary condition: particles only 
incident from left

Rae §9.1; B&J §4.3 

Case 1

(But E > 0 )

Free particle S.E.:

−
ℏ2

2m
2
 x2=E

⇒=AeikxBe−ikx With:
ℏ2 k2

2m
=E

Choose 1 particle per unit length 
in incoming beam⇒ A=1

Same as 
region 2 of 
finite well. −

ℏ2

2m
2
 x2V 0=E

⇒=Ce xDe− x With:
ℏ22

2m
=V 0−E

The Ce x  term is not normalisable.

Regions 1 & 3 
of finite well.
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Potential Step (2)

Continuity of ψ at x=0:

d
Continuity of  at 0 :

d
x

x

 

Solve for reflection and transmission:

1B=D

i k 1−B =−D

i k× equation 1  equation 2:

2 i k=i k−D ⇒ D= 2 i k
i k−

× equation 1  equation 2:

i k −i k B=0 ⇒ B=−
i k 
−i k 
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Transmission and reflection coefficients

Incident particle flux from left=ℏ k
m

What is the flux reflected back to the left? :

− i ℏ
2m [∗ 

 x
−

∗

 x ] =B e−i k x

=− i ℏ
2m
∣B∣2 [ei k x −i k e−i k x−ei k x i k ei k x ]

=−ℏ k
m
∣B∣2

Hence the probability of reflection: 

R=Reflected flux
Incident flux

=∣B∣2=BB∗=i k
−i k

−i k
i k

=1

So all particles are reflected.

Transmitted flux: =D e− x 

− i ℏ
2 m
∣D∣2 [e− x −e− x−e− x −e− x ]

=0
i.e.: Probability of transmission T=0
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Potential Step (3)
Case 2: E>V0 (above step)

Solution for x>0 is now

Matching conditions:

Transmission and reflection coefficients:

x=F ei k ' xG e−i k ' x With:
ℏ2 k 2

2 m
=E−V 0

No incoming particles from right ⇒ G=0

  continuous. 1B=F

 x

 continuous. i k 1−B=i k ' F

i k× equation 1equation 2 ⇒ 2 i k=i kk ' F ⇒ B= k−k '
kk '

i k '× equation 1equation 2 ⇒ i k '−k i k 'k B=0 ⇒ B= k−k '
kk '

By our argument, reflection probability:

R=∣B∣2=
k−k ' 2

kk ' 2
 No longer 1 if k=k '



2222 Quantum Physics 2006-7 62

Summary of transmission through potential 
step

Notes:

•Some penetration of particles into forbidden region even for energies 
below step height (case 1, E<V0);

•No transmitted particle flux, 100% reflection (case 1, E<V0);

•Reflection probability does not fall to zero for energies above barrier (case 
2, E>V0).

•Contrast classical expectations:

100% reflection for E<V0, with no penetration into barrier;

100% transmission for E>V0

Transmitted flux: =∣F∣2
ℏ k '
m
=
ℏ k '
m

4 k 2

kk ' 2

  Transmission probability: =Transmitted flux
Incident flux

= 4 k k '
kk ' 2
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Summary of transmission through potential 
step (Cont.)

Check RT=
k−k ' 2

kk ' 2
 4 k k '

kk ' 2
= k2−2 k k 'k ' 24 k k '

kk ' 2

=1 as required.
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3.6 Rectangular Potential Barrier
Rae §2.5; B&J §4.4; B&M §5.9

Now consider a potential barrier of 
finite thickness:

V(x)

x

a

I II III

0

V0

Boundary condition: particles only 
incident from left

Region I: Region II: Region III:

Assume 0EV 0

 x=Ae i k xB e−i k x

With 
ℏ2 k2

2 m
=E 

Take A=1 (i.e. 1 particle per 
 unit length.)

=C e xD e− x

With 
ℏ22

2m
=V 0−E 

N.B: No reason to exclude either 
 solution since region II is finite.

 x=F ei k xG e−i k x

(With k  as in region I.)
Exclude G  term as this term 
 represents particles travelling 
 from the right.

⇒ G=0
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Rectangular Barrier (2)

0x 

Match value and derivative of 
wavefunction at region boundaries:

x a 
Match ψ:

Match dψ/dx:

Eliminate wavefunction in central 
region:

1B=CD [1]

i k 1−B=C−D [3]

C eaD e−a=F ei k a [2]

C ea−D e−a=i k F ei k a [4]

Eliminate B :
i k [1][3] : 2 i k=i kCi k−D
[2][4] : 2C ea=i k F ei k a

[2]−[4] : 2D e−a=−i k F ei k a

Eliminate C  & D in the same way...

To get F=
4 i k e−i k a

i k 2 e−a−−i k 2 ea
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Rectangular Barrier (3)
Transmission and reflection coefficients:

For very thick or high barrier:

Non-zero transmission (“tunnelling”) through classically 
forbidden barrier region:

Transmission probability: T=∣F∣
2

∣A∣2
=∣F∣

2

1
=

16 k 22

∣i k 2 e−a−−i k 2 ea∣2

Reflection probability: R=∣B∣2=1−T

T≃
16 k 22

∣−i k 2∣2 e2 a
=

16 k 22

−i k 2
e−2a

=
16 E V 0−E 

V 0
2

e−a

a≫1 ⇒ ea≫e−a
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Examples of tunnelling
Tunnelling occurs in many situations in physics and astronomy:

1. Nuclear fusion (in stars 
and fusion reactors)

3. Field emission of 
electrons from surfaces 
(e.g. in plasma displays)

V

2

0 nucleus

( )
Barrier height ~ ~ MeV

4

thermal energies (~keV)

Ze

r
?

Internuclear 
distance x

Coulomb 
interaction 
(repulsive)

Strong nuclear 
force 
(attractive)

Incident 
particles

2. Alpha-decay

Distance x of α-
particle from nucleus

V

Initial α-particle 
energy

Distance x of 
electron from 
surface

V

Work function 
W

Vacuum
Material
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3.7 Simple Harmonic Oscillator

0

2 2 2
0

Force 

Angular frequency =

1 1Potential energy ( ) 2 2

F kx

k

m

V x kx m x





 

 

Example: particle on a 
spring, Hooke’s law 
restoring force with spring 
constant k:

Mass m

x

Time-independent 
Schrődinger equation:

Problem: still a linear differential equation 
but coefficients are not constant.

Simplify: change variable to 

Rae §2.6; B&M §5.5; B&J §4.7

−
ℏ2

2m
d 2
d x2

1
2

m0 x2=E

y=m0

ℏ 
1
2

x ⇒ d
d y
= d x

d y
d

d x
= ℏ

m0
−

1
2 d

d x

Substitute: −
ℏ

2m

m0

ℏ
d 2
d y2

 1
2
ℏ0 y2=E y

⇒
d 2
d y2− y0=0 = 2 E

ℏ0
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Simple Harmonic Oscillator (2)
Asymptotic solution in the 
limit of very large y:

Check:

 y= yn exp± y2

2 

d
d y
=n yn−1exp± y2

2  ± yn1exp± y2

2 
⇒

d 2
d y2=[n n−1 yn−2 ±2n−1 yn yn2 ]exp ± y2

2 
≃ yn2exp± y2

2 = y2 (For large y .)

Substitute:  y=H  yexp± y2

2 


S.E. for large y

d 2
d y2

− y2=0

is satisfied.

Only -ve part gives 
normalisable solution.


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Simple Harmonic Oscillator (2) (Cont.)

Substitute in S.E:

[ H ' '  y −2 y H '  y y2−1H  y ]exp− y2

2   − y2H  y exp− y2

2  = 0

⇒ H ' '  y−2 y H '  y−1H  y=0

Equation for H:

d
d y
=[H '  y− y H  y ]exp− y2

2 
d 2
d y2

[H ' '  y −2 y H '  y −H  y y2 H  y  ]exp− y2

2 

H is the correction function to find all solutions.
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Simple Harmonic Oscillator (3)
Must solve this ODE by the power-series 
method (Frobenius method); this is done as 
an example in 2246.

We find:

•The series for H(y) must terminate in order to obtain a normalisable solution

•Can make this happen after n terms for either even or odd terms in series (but not both) 
by choosing:

Label resulting functions of H by 
the values of n that we choose.

Hn is known as the nth Hermite 
polynomial.

H  y=∑
p=0

∞

a p y p

=2n1 (For some integer n .) ⇒ E=ℏ0n 1
2 

If n  is even, we must also choose a1=0, so all odd terms in the series vanish giving an even solution. 
If n  is odd, we must also chose a0=0, so all even terms vanish to give an odd solution.
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The Hermite polynomials

For reference, first few Hermite polynomials are:

 
 
 
 
 

0

1

2
2

3
3

4 2
4

1;

2 ;

4 2;

8 12 ;

16 48 12.

H y

H y y

H y y

H y y y

H y y y





 

 

  

NOTE:

Hn contains yn as the highest power.

Each H is either an odd or an even function, according to whether n 
is even or odd.
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Simple Harmonic Oscillator (4)

Transforming back to the original variable x, the 
wavefunction becomes:

Probability per unit length of finding the particle is:

0 x=C0 exp−m0 x2

2ℏ  , 1 x=C1 x exp−m0 x2

ℏ  , etc.

C0 , C1 , etc. are normalising constants that satisfy:∫∣n x∣
2
d x=1

∣Cn x∣
2

when the system is in state n .

E.g.:∣C0  x∣
2=∣C0∣

2 exp−m0 x2

ℏ 
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Simple Harmonic Oscillator (4) (Cont.)

Compare classical result: probability of finding particle in a length δx is proportional to 
the time δt spent in that region:

For a classical particle with total energy E, velocity is given by

pclassical xd x  d t  d x
v

1
2

m v2V  x =E ⇒ V= 2 E−V  x 
m

⇒ pclassical  1

E−V  x
= 1

E−1
2

m0 x2
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Notes

• “Zero-point energy”: 
• “Quanta” of energy:
• Even and odd solutions
• Applies to any simple harmonic oscillator, including 

– Molecular vibrations
– Vibrations in a solid (hence phonons)
– Electromagnetic field modes (hence photons), even though this field does not 

obey exactly the same Schrődinger equation

• You will do another, more elegant, solution method (no series or 
Hermite polynomials!) next year

• For high-energy states, probability density peaks at classical turning 
points (correspondence principle)

E=n 1
2 ℏ0 in nth state.

Ground state energy: E0= 1/2 ℏ0

Can only add or subtract multiples of ℏ0
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4 Postulates of QM

This section puts quantum mechanics onto a more formal mathematical 
footing by specifying those postulates of the theory which cannot be 
derived from classical physics.

Main ingredients:
3. The wave function (to represent the state of the system);
4. Hermitian operators (to represent observable quantities);
5. A recipe for identifying the operator associated with a given 

observable;
6. A description of the measurement process, and for predicting the 

distribution of outcomes of a measurement;
7. A prescription for evolving the wavefunction in time (the time-

dependent Schrődinger equation)
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4.1 The wave function
Postulate 4.1: There exists a wavefunction Ψ that is a continuous, 
square-integrable, single-valued function of the coordinates of all the 
particles and of time, and from which all possible predictions about the 
physical properties of the system can be obtained.

Examples of the meaning of “The coordinates of all the particles”: 

For a single particle moving in 
one dimension:

For a single particle moving in 
three dimensions:

For two particles moving in three 
dimensions:

The modulus squared of Ψ for any value of the coordinates is the probability 
density (per unit length, or volume) that the system is found with that particular 
coordinate value (Born interpretation).

x

 x , y , z  r , , etc.

 x1 , y1 , z1 , x2 , y2 , z2 etc.
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4.2 Observables and operators

1

2

3

4

ˆ [ ] 2

ˆ [ ]

ˆ [ ]

dˆ [ ]
d

L f f

L f xf

L f f

f
L f

x



Postulate 4.2.1: to each observable quantity is associated a linear, Hermitian 
operator (LHO).

Examples: which of the operators 
defined by the following equations are 
linear?

Note: the operators 
involved may or may 
not be differential 
operators (i.e. may or 
may not involve 
differentiating the 
wavefunction).

An operator L  is linear  if, and only if: L [c1 f 1c2 f 2 ]=c1
L [ f 1]c2

L [ f 2]

For arbitrary functions f 1  & f 2

 and constants c1  & c2 . 

NOT linear as L1 [c1 f 1c2 f 2]=c1 f 1c2 f 22

Linear as L2[c1 f 1c2 f 2 ]=c1 x f 1c2 x f 2

NOT linear as L3[c1 f 1c2 f 2]=c1 f 1c2 f 2

Linear as L4[c1 f 1c2 f 2 ]=c1

d f 1

d x
c2

d f 2

d x
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Hermitian operators

ijM

An operator O is Hermitian if and only if:

for all functions f,g vanishing at infinity.

Compare the definition of a Hermitian matrix M:

Analogous if we identify a matrix element with an integral:

(see 3226 course for more 
detail…)

∫
−∞

∞

f ∗  O g dx=[∫
−∞

∞

g∗  O f dx ]
∗

M i j=[ M j i ]
∗

∫
−∞

∞

f i
∗  O f jdx
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Hermitian operators: examples
The operator  is Hermitianx

d
The operator  is not Hermitian.

dx

2

2

d
The operator  is Hermitian.

dx

∫
−∞

∞

f ∗  x g dx=∫
−∞

∞

g x f ∗ dx=[∫
−∞

∞

g ∗ x f dx ]
∗

(Since x  is real.)

∫
−∞

∞

f ∗
dg
dx

dx=[ f ∗ g ]−∞
∞
−∫
−∞

∞

g
df ∗

dx
dx [ f ∗ g ]=0  as f  & g  vanish at ∞

=−[∫
−∞

∞

g∗
df
dx

dx ]
∗

∴  Not Hermitian because of -ve sign. (This is 'Anti-Hermitian.')

∫
−∞

∞

f ∗
d 2 g

dx 2
dx=[ f ∗

dg
dx ]−∞

∞

−∫
−∞

∞
dg
dx

df ∗

dx
dx

=−[ df ∗

dx
g ]
−∞

∞

∫
−∞

∞
d 2 f ∗

dx2 g dx=∫
−∞

∞

g∗
d 2 f

dx2 dx
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Eigenvectors and eigenfunctions

Postulate 4.2.2: the eigenvalues of the operator represent the possible 
results of carrying out a measurement of the corresponding quantity.

Definition of an eigenvalue for a general linear operator:

Example: the time-independent Schrődinger 
equation:

Compare definition of an eigenvalue of a matrix:

Qn=qnn
n  is an eigenfunction.
qn  is an eigenvalue.

M v=n vn
vn  is an eigenvector.
n  is an eigenvalue.

H=E
The energy in the T.I.S.E. is an eigenvalue of the Hamiltonian operator, and   is an eigenfunction.

Interpretation of Eigenfunction:  It is a state of the system in which there is a definite value 
 of the quantity concerned.
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Postulate 4.2.3: immediately after making a measurement, the wavefunction 
is identical to an eigenfunction of the operator corresponding to the 
eigenvalue just obtained as the measurement result.

Proof:

Ensures that we get the same result if we immediately re-measure the 
same quantity.

Important fact: The eigenvalues of a Hermitian operator are real (like the 
eigenvalues of a Hermitian matrix).

Let Qm=qmm (Where Q  is Hermitian.)

Then [∫
−∞

∞

m
∗  Qmdx ]=[∫

−∞

∞

m
∗  Qmdx ]

∗

(Using f =g=m )

⇒ [∫
−∞

∞

m
∗  Qmdx ]=qm∫

−∞

∞

∣m∣
2
dx (Which is real.)

But ∫
−∞

∞

∣m∣
2
dx  is real. ∴ qm  is real.

Start with wave-function   and then measure quantity Q ⇒  Obtain result qm  ( one of the 

 eigenvalues of Q  ) ⇒ Leave system with corresponding wave-function m
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4.3 Identifying the operators
Postulate 4.3: the operators representing the position and 
momentum of a particle are

Other operators may be obtained from the corresponding 
classical quantities by making these replacements.

Examples:

The Hamiltonian (representing the total energy as a 
function of the coordinates and momenta)

Angular momentum:

(one dimension) (three dimensions)

x=x
i.e. x=x

px=−i ℏ

 x

i.e. p x=−i ℏ
d
dx

r=r p=−i ℏ [i  x
 j


 y
k


 z ]=−i ℏ∇

H=
p2

2 m
V  r =

−ℏ2

2 m
∇2V  r  or

−ℏ2

2 m
2

 x2V  x

L=r× p=−i ℏ r×∇ ⇒ L=−i ℏ r×∇
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Eigenfunctions of momentum

The momentum operator is Hermitian, as 
required:

Its eigenfunctions are plane waves:

∫
−∞

∞

f ∗  p g dx=[−i ℏ∫
−∞

∞

f ∗  dg
dx dx ]=−i ℏ [−∫

−∞

∞

g∗  df
dx dx ]

∗

=[−i ℏ∫
−∞

∞

g∗
df
dx

dx ]
∗

=[∫
−∞

∞

g∗  p f dx ]
∗ Factor of −i  makes p

Hermitian, even though 

 x

 isn't. 
px ei k x=−i ℏ de i k x

dx
=−i ℏ i k ei k x

=ℏ k ei k x

ei k x  is indeed an eigenfunction of px  with eigenvalue ℏ k
This corresponds to a state having a definite momentum ℏ k  (in agreement with DeBroglie.)
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Orthogonality of eigenfunctions
The eigenfunctions of a Hermitian operator belonging to 
different eigenvalues are orthogonal.

Proof:

If Qn=qnn ; Qm=qmm with qn≠qm then ∫
−∞

∞

n
∗m dx=0

Use Hermitian definition, taking : f =n , g=m

⇒ ∫
−∞

∞

n
∗  Qmdx=[∫

−∞

∞

m
∗  Qndx ]

∗

RHS=[qn∫
−∞

∞

m
∗n dx ]

∗

=qn∫
−∞

∞

mn
∗ dx (Since qn  is real.)

LHS=qm∫
−∞

∞

n
∗m dx

We chose qm≠qn ⇒ ∫
−∞

∞

n
∗m dx=0

RHS=LHS=qm−qn∫
−∞

∞

n
∗m dx=0
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Orthonormality of eigenfunctions
What if two eigenfunctions have the same eigenvalue? (In this 
case the eigenvalue is said to be degenerate.)

Any linear combination of these eigenfunctions is also an 
eigenfunction with the same eigenvalue:

So we are free to choose as the eigenfunctions two linear 
combinations that are orthogonal.

If the eigenfunctions are all orthogonal and normalized, 
they are said to be orthonormal.

Q c11c22=c1
Q1c2

Q2

=c1 q1c2 q2

=q c11c22
 Q11=q1

Q22=q2


We can choose to have all the eigenfunctions orthogonal regardless of 
whether the eigenvalues are the same or different.

∫
−∞

∞

n
∗m dx=n m
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Orthonormality of eigenfunctions: example
Consider the solutions of the time-independent Schrődinger equation 
(energy eigenfunctions) for an infinite square well:

We chose the constants so that normalization is correct:

Eigenfunctions of H 

n={ 1

a
cos n x

2a  , for odd n

1

a
sin  n x

2a  , for even n}For −axa , otherwise 0 ∫
−a

a

∣n∣
2
dx=1

Consider 2 different values n , m :
[1] 2 odd values:

∫
−a

a

n
∗m dx=∫

−a

a
1
a

cos n x
2a cos m x

2a dx

= 1
2a∫−a

a [cos nm x
2a cos n−m x

2a ]dx

= 1
2a [ 2a
nm

sin  nm x
2a  2a

n−m
sin  n−m x

2a ]−a

a

=0

cos cos=1
2
[cos −cos ]
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Orthonormality of eigenfunctions: example 
(Cont.)

[2]  2 even values:

Similarly =0 sinsin = 1
2
[cos −−cos  ]

[3]  Even & odd values:

∫
−a

a

n
∗m dx=0  by symmetry.

⇒ ∫
−a

a

n
∗m dx=n m
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Complete sets of functions
The eigenfunctions φn of a Hermitian operator 
form a complete set, meaning that any other 
function satisfying the same boundary conditions 
can be expanded as

If the eigenfunctions are chosen to be orthonormal, the 
coefficients an can be determined as follows:

We will see the significance of such expansions when we 
come to look at the measurement process.

 x =∑
n

ann x 

Where:  is an arbitrary function, 
an are numbers, and n  are eigenfunctions.

Consider: ∫
−∞

∞

m
∗dx=∑

n

an∫
−∞

∞

m
∗n dx

=∑
n

anm n

=am

⇒ Find number am , multiply   by m
∗  and integrate.
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Normalization and expansions in complete 
sets

The condition for normalizing the wavefunction is now

If the eigenfunctions φn are orthonormal, this becomes 

Natural interpretation: the probability of finding the system in the state 
φn(x) (as opposed to any of the other eigenfunctions) is 

2

na

1=∫
−∞

∞

∣ x∣2 dx=∫
−∞

∞

[∑m amm  x]
∗

[∑n annX ]dx=∑
m
∑

n

am
∗ an∫

−∞

∞

m
∗  xn

∗  xdx

∫
−∞

∞

m
∗ xn

∗  xdx=m n= {1 m=n
0 otherwise}

1=∑
m
∑

n

am
∗ anm n=∑

n

∣an∣
2
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Expansion in complete sets: example
Consider an infinite square well, with a particle confined to −axa
Hamiltonian has eigenfunctions:

n x={{ 1

a
cos

n x
2 a

 ( n  odd)

1

a
sin 

n x
2 a

 ( n  even)}For −axa

0  otherwise
}

So any function f  x  satisfying some boundary conditions
 (i.e zero outside well) can be represented as:

f  x=∑
n  odd

an

1

a
cos

n x
2 a

∑
n  even

1

a
sin 

n x
2a



Eigenfunctions are orthonormal (see previous working)

⇒ an={∫−a

a
1

a
cos

n x
2 a

 f  xdx ( n  odd)

∫
−a

a
1

a
sin 

n x
2 a

 f  xdx ( n  even)}
This is a Fourier series representation of f  x
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4.4 Eigenfunctions and measurement
Postulate 4.4: suppose a measurement of the quantity Q is made, and that 
the (normalized) wavefunction can be expanded in terms of the 
(normalized) eigenfunctions φn of the corresponding operator as

Then the probability of obtaining the corresponding eigenvalue qn as the 
measurement result is 2

na

What is the meaning of these “probabilities” in 
discussing the properties of a single system?

Still a matter for debate, but usual interpretation is that 
the probability of a particular result determines the 
frequency of occurrence of that result in measurements 
on an ensemble of similar systems.

Corollary: if a system is definitely in eigenstate φn, the result measuring 
Q is definitely the corresponding eigenvalue qn.

 x =∑
n

ann  x 
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Commutators
In general operators do not commute: that is to say, the order in 
which we allow operators to act on functions matters:

For example, for position and momentum operators:

We define the commutator as the 
difference between the two orderings:

Two operators commute if, and only if, their 
commutator is zero. Note: The commutator 
of any operator with itself is zero!

Q R≠ R Q (In general)

(In x  direction)

x  p=x X−i ℏ
d
d x

⇒ x p− p x=i ℏ

p  x=−i ℏ

 x
 x=−i ℏ x

d
d x  ⇒ [ x , p ]= x p− p x=i ℏ

[ Q , R ]= Q R− R Q

[ Q , Q ]= Q Q−
Q Q=0

So, for position and momentum:

[ x , p x ]=i ℏ
But: [ x , p y ]=0=[ x , p z ]
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Compatible operators
Two observables are compatible if their operators share the same 
eigenfunctions (but not necessarily the same eigenvalues). 

Consequence: two compatible observables can have precisely-defined 
values simultaneously.

Compatible operators commute with one another:

Measure 
observable Q, 
obtain result qm 
(an eigenvalue of 
Q)

Wavefunction of 
system is 
corresponding 
eigenfunction φm

Measure observable R, 
definitely obtain result 
rm (the corresponding 
eigenvalue of R)

Wavefunction of 
system is still 
corresponding 
eigenfunction φm

Re-measure Q, 
definitely 
obtain result qm 
once again

Can also show the converse: any two 
commuting operators are compatible.

Expansion in terms of 
joint eigenfunctions of 
both operators

Consider a general wavefunction  x =∑
n

ann x 

Q  R = Q [∑n an rnn  x] ( r n  eigenvalues of R )

=∑
n

an qn rnn x  ( Using linearity of operator)

And: R  Q=∑
n

an r n qnn x  ⇒
Q R= R Q for any 

⇒ [ Q , R ]=0
Uncertainty of measurement is proportional to commutator.
Commuator here is zero, so no uncertainty.
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Example: measurement of position

Eigenfunctions of position operator x  would have to be states of definite position.
'Dirac  - functions'.
For now, consider approximate eigenstates: Suppose we have a series of detectors (in one dimension)
each sensitive to the presence of a particle in length 
Detectors are n , n1, n2 etc. Starting at xn , xn1  etc. on the x - axis.

Corresponding eigenfunctions: n x ={−
1
2 when x  in nth  region

0  otherwise }
Check normalisation: ∫

−∞

∞

∣n∣
2
dx= ∫

xn

xn 1


dx= 1

=1

Check orthogonality: ∫
−∞

∞
n

∗m dx=0 (If n≠m )

Since at least one of n  and m  is always zero.

n x 

xn xn1


−

1
2
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Example: measurement of position (2)
Now take system with general wavefunction as   x=∑

n
ann  x (Becomes extinct as 0 )

Where: an=∫
−∞

∞
n

∗
x  x dx=∫

−∞

∞
  x dx−

1
2

≃
−

1
2 xn 

Probability that n th  detector 'fires' =∣an∣
2
=∣ xn∣

2
⇒ Consistent with Born interpretation that ∣∣2

 is a probability density. (Probability per unit length.)

Schematically:

x x

≃ Measure position

x`

nth  detector fires.
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Expectation values

The average (mean) value of measurements of the quantity Q is therefore the sum of 
the possible measurement results times the corresponding probabilities:

We can also write this as:

〈Q 〉=∑
n
∣an∣

2 qn

∫
−∞

∞

∗  x  Q x  dx = ∫
−∞

∞

∑n ann x
∗

∑m am
Qm x dx

=∑
n
∑

m

qm an
∗ am∫

−∞

∞

n
∗m dx Since Qm=qmm ∫

−∞

∞

n
∗m dx=m n

=∑
n

qn∣an∣
2 = 〈 Q 〉
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4.5 Evolution of the system
Postulate 4.5: Between measurements (i.e. when it is not disturbed by 
external influences) the wave-function evolves with time according to the 
time-dependent Schrődinger equation.

This is a linear, homogeneous differential equation, so the linear combination of any two 
solutions is also a solution: the superposition principle.

i ℏ

 t
= H Where H  is the Hamiltonian operator.

i ℏ
1

 t
=
H1

i ℏ
2

 t
=
H2

⇒ i ℏ

 t

c11c22=c1
H1c2

H2

=
H c11c22  (Since H  is linear.)
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Calculating time dependence using expansion 
in energy eigenfunctions 

Suppose the Hamiltonian is time-independent.  In that case we know that solutions of the 
time-dependent Schrődinger equation exist in the form:

where the wavefunctions ψ(x) and the energy E correspond to one solution of 
the time-independent Schrődinger equation:

We know that all the functions ψn together form a complete set, so we can expand  

Hence we can find the complete time dependence 
(superposition principle):

n x , t =exp− i En t
ℏ n  x

Hn=Enn

 x , 0=∑
n

ann  x

 x , t =∑
n

an  x ,t =∑
n

an e
− i En t

ℏ 
n x 
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Time-dependent behaviour: example
Suppose the state of a particle in an infinite square well at time t=0 
is a `superposition’ of the n=1 and n=2 states 

Wave function at a subsequent time t

Probability density

 x , 0=c11 xc22 x

=c1 1
a

cos x
2 a c2 1

a
sin  x

a 
 x , t =c11 xe

−
i E1t

ℏ c22  xe
−

i E2 t

ℏ

= 1
a

e
−

i E1 t

ℏ {c1 cos  x
2 a c2 sin  x

a e−
i  E2−E1 t

ℏ }
∣ x ,t ∣2=1

a∣c1 cos x
2 a c2 sin  x

a e−
i  E2−E1 t

ℏ ∣
2

=1
a {∣c1∣

2
cos2 x

2 a ∣c2∣
2
sin2  x

a 2cos x
2a sin  x

a  [c1
∗ c2 e

−
i E2−E1t

ℏ ]}
Probability 
distribution 
in state 1.

Probability 
distribution 
in state 2.

Oscillates with an angular frequency:

=
E2−E1

ℏ
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Rate of change of expectation value
Consider the rate of change of the 
expectation value of a quantity Q:

d 〈 Q 〉
d t

= d
d t
∫
−∞

∞

∗  Q  dx

=∫
−∞

∞  d∗

d t   Q dx∫
−∞

∞

∗  d Q
d t
dx∫

−∞

∞

∗  Q d
d t dx

= 1
−i ℏ ∫−∞

∞

 H ∗  Q  dx〈 d Q
d t 〉 1

i ℏ ∫−∞
∞

∗  Q H   dx

H  and Q  are Hermitian ⇒ ∫
−∞

∞

 H ∗  Q  dx=[∫
−∞

∞

 Q ∗ H dx ]
∗

=∫
−∞

∞

∗ H  Q  dx

⇒
d 〈 Q 〉
d t

=〈 d Q
d t 〉 1

i ℏ ∫−∞
∞

∗  Q H− H Q  dx

=〈 d Q
d t 〉 1

i ℏ
〈 [ Q , H ] 〉

Comes from intrinsic time 
dependence of operator.

Commutator: Comes from the 
time dependence of the wave 
function.
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Example 1: Conservation of probability
Rate of change of total probability that the 
particle may be found at any point: 

Total probability conserved (related to existence of a well 
defined probability flux – see §3.4)

Total probability is the 
“expectation value” of the 
operator 1.


 t
∫
−∞

∞

∣∣2 dx=

 t
∫
−∞

∞

∗ 1× dx

=〈1 t 〉 1
i ℏ

〈 [1 , H ] 〉

=0  since the commutator of 1 with any operator is zero: 〈 [1 , H ] 〉= H− H=0

⇒ ∫
−∞

∞

∣∣2 dx=constant
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Example 2: Conservation of energy

Even although the energy of a system may be uncertain (in the sense that measurements of the 
energy made on many copies of the system may be give different results) the average energy 
is always conserved with time.

Consider the rate of change of the mean energy:


 t

〈 E 〉 = 
 t
∫
−∞

∞

∗ H dx = 〈 d H
d t 〉 1

i ℏ
〈 [ H , H ] 〉 = 〈 d H

d t 〉0

If Hamiltonian is constant in time, i.e. if 
d H
dt
=0

⇒
d 〈E 〉
d t

=0 Conservation of energy provided
Hamiltonian is constant in time.
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5.1 Angular momentum operators
Angular momentum is a very important quantity in three-
dimensional problems involving a central force (one that is 
always directed towards or away from a central point).  In that 
case it is classically a conserved quantity:

We can write down a quantum-mechanical operator for it by applying our usual rules:

Central 
pointr

F

The origin of r is the same central 
point towards/away from which 
the force is directed.

Reading: Rae Chapter 5; 
B&J§§6.1,6.3; B&M§§6.2-6.5

d L
d t
= d

d t
R× p = ṙ× pr× ṗ

= p
m
× p r×F =0

L=r× p=r×−i ℏ∇ =∣ i j k
x y z

−i ℏ d
d x

−i ℏ d
d y

−i ℏ d
d z
∣
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5.1 Angular momentum operators (cont.)
Individual components:

L x=y pz−z p y=−i ℏ  y

 z
−z


 y 

L y=z px−x pz=−i ℏ  z  x
−x


 z 

L z=x p y− y px=−i ℏ  x  y
− y


 x 
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5.2 Commutation relations***
Remember:

[ , ]

[ , ]

[ , ]

x

y

z

x p i

y p i

z p i






h
h
h

The different components of angular momentum do 
not commute with one another.

By similar arguments get the cyclic permutations:

[ L x , L y ]= Lx
L y− L y

L x

= y pz−z p y   z px−x pz − z px−x pz   y pz−z py 
= y pz z px−z px y pz −y pz x pzx pz y pz−z p y z pxz px z p y z p y x pz−x pz z py 
= y pz z px−z px y pz  z p y x pz−x pz z p y 
=−[ z , pz ] y px[ z , pz ] x p y

=i ℏ  x p y− y px 
=i ℏ Lz

[ L x , L y ]=i ℏ Lz [ L y , L z ]=i ℏ L x [ Lz , L x ]=i ℏ L y
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Commutation relations (2)
The different components of L do not commute with one another, but they do commute with 
the (squared) magnitude of the angular momentum vector:

Important consequence: we cannot find 
simultaneous eigenfunctions of all three 
components.  

But we can find simultaneous eigenfunctions of one 
component (conventionally the z component) and L2

Note a useful formula:

[ A2 , B ]=A2 B−A B AA B A−B A2

=a [ A , B ][ A , B ] A

L2= Lx
2 L y

2 L z
2

Consider: [ L2 , Lz ]=[ Lx
2 , Lz ][ L y

2 , Lz ][ Lz , Lz ]
 and [ L x

2 , Lz ]= Lx [ Lx , L z ][ L x , L z ] Lx

= Lx −i ℏ L y −i ℏ L y
Lx

=−i ℏ  L x
L y L y

L x 
Similarly: [ L y , L z ]=i ℏ  Lx

L y L y
Lx 

⇒ [ L , Lz ]=[ Lx
2 , Lz ][ L y

2 , Lz ]
=0
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5.3 Angular momentum in spherical polar 
coordinates

Spherical polar coordinates are the natural coordinate system in which to 
describe angular momentum.  In these coordinates,

On this slide, hats refer 
to unit vectors, not 
operators.

So the full (vector) angular momentum operator 
can be written

x

y

z

θ

φ

r

To find z-component, note that unit vector k 
in z-direction satisfies

(see 2246) ˆ
rrr e∇= er


 r
1

r
e


 1

r sin 
e



L=−i ℏ r×∇=−i ℏ r er×∇=−i ℏ∣ er e e
r 0 0

 r

1
r



1
r sin 



∣

L=−i ℏ − e 1
sin 



 e


 

k⋅e=−sin
k⋅ e=0

⇒ Lz=k⋅L=−i ℏ



Note: Has no er  component 
and doesn't depend on r .

k
z


e


2



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L2 in spherical polar coordinates

Depends only on angular behaviour of wavefunction.  Closely 
related to angular part of Laplacian (see 2246 and Section 6).

On this slide, hats refer 
to unit vectors, not 
operators.

L2=L⋅L=−ℏ2 r×∇ ⋅ r×∇ 
=−ℏ2 [ r2∇ 2−r⋅∇  ∇⋅r  ]

=−ℏ2[ r2 { 1

r 2


 r r 2 

 r  1

r2 sin 

 sin 


  1

r2 sin2
2

2 }−r

 r   r

r ]
Since ∇ 2= 1

r2


 r r2 

 r  1

r2 sin

 sin


  1

r 2 sin2
2

2

 and radial parts of r 2∇2  and r⋅∇  ∇⋅r   cancel.

L2=−ℏ2 [ 1
sin


 sin


  1

sin2
2

2 ]

∇ 2= 1

r2


r r2 

 r − L2

ℏ2 r2
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5.4 Eigenvalues and eigenfunctions 
Look for simultaneous eigenfunctions of L2 and one 
component of L (conventional to choose Lz)

Physical boundary condition: wave-function 
must be single-valued

Quantization of angular 
momentum about z-axis (compare 
Bohr model)

Eigenvalues and eigenfunctions of Lz :

−i ℏ



=

⇒ =Ae
i
ℏ Note: L z  only depends on 

2=
Taking our eigenfunction we have: 

2=Ae
I 2

ℏ =Ae
i
ℏ e

i2
ℏ e i2

ℏ =1
⇒


ℏ
=integer , =mℏ  where m is an integer.

=Aei m
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Eigenvalues and eigenfunctions (2)
Now look for eigenfunctions of L2, in the form (ensures solutions remain eigenfunctions of Lz, 

as we want)

Eigenvalue condition becomes

f  ,==ei m

L2 [ei m ]=ℏ2 ei m Let eigenvalue =ℏ2

⇒ −ℏ2[ ei m

sin 

 sin


  

sin2
2

2
ei m  ]=ℏ2 ei m

Divide through by ℏ2 ei m

⇒ − 1
sin


 sin


  m2

sin2
=
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The Legendre equation

Make the substitution

This is exactly the Legendre equation, solved in 
2246 using the Frobenius method.

=cos

⇒


=

d 
d 



=−sin 




,  and sin2=1−cos2=1−2

⇒  Get: 
d

d [1−2
d
d  ][− m2

1−2 ]=0
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Legendre polynomials and associated 
Legendre functions

In order for solutions to exist that remain finite at μ=±1 (i.e. at θ=0 
and θ=π) we require that the eigenvalue satisfies

The finite solutions are then the associated Legendre functions, which can be 
written in terms of the Legendre polynomials:

where m is an integer constrained to lie between –l and +l.

Legendre polynomials:

(like SHO, where we found restrictions on 
energy eigenvalue in order to produce 
normalizable solutions) 

=l l1 , where l=0,1,2, 3,4, ...

P l
m =1−2

∣∣
2  d

d 
∣∣

P l 

P0=1 P1=¿

P2=
1
2
32−1 P3=

1
2
53−3

etc.
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Spherical harmonics

0
0

1
1

0
1

1
1

1
( , )

4

3 3 ( )
( , ) sin exp( )

8 8

3 3
( , ) cos

4 4

3 3 ( )
( , ) sin exp( )

8 8

Y

x iy
Y i

r

z
Y

r

x iy
Y i

r

 


   
 

  
 

   
 





   

 

  

The full eigenfunctions can also be written as spherical harmonics:

Because they are eigenfunctions of Hermitian operators with different eigenvalues, they are 
automatically orthogonal when integrated over all angles (i.e. over the surface of the unit 
sphere). The constants C are conventionally defined so the spherical harmonics obey the 
following important normalization condition:

First few examples (see also 2246):

Remember

sin cos

sin sin

cos

x r

y r

z r

 
 






Y l
m ,=cl m P l

m cosei m

 cl m=−1m  l−m! 2 l1
 lm! 4 

∫
0



sind ∫
0

2

d  [Y l
m  ,]∗ Y l '

m'  ,=l ,l ' m , m'={1  if l=l '  and m=m'
0  otherwise }
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Shapes of the spherical harmonics

Imaginary

Real

z

x

y

0

0

1

4
m

l

l

m

Y







1

1

3
sin exp( )

8
m

l

l

m

Y i 





 

1

0

3
cos

4
m

l

l

m

Y 







1
1Y

1
1Re[ ]Y

0
1Y0

0Y

To read plots: distance from origin corresponds to magnitude (modulus) of 
plotted quantity; colour corresponds to phase (argument).

(Images from http://odin.math.nau.edu/~jws/dpgraph/Yellm.html)

http://odin.math.nau.edu/~jws/dpgraph/dpgfiles/Yellm/Y00.dpg
http://odin.math.nau.edu/~jws/dpgraph/dpgfiles/Yellm/Y10.dpg
http://odin.math.nau.edu/~jws/dpgraph/dpgfiles/Yellm/Y11.dpg
http://odin.math.nau.edu/~jws/dpgraph/dpgfiles/Yellm/ReY11.dpg
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Shapes of spherical harmonics (2)

(Images from http://odin.math.nau.edu/~jws/dpgraph/Yellm.html)

Imaginary

Real

z

x

y

2

2

0

5
(3cos 1)

16
m

l

l

m

Y 





 
2

1

15
sin cos exp(i )

8
m

l

l

m

Y   





 2

2

2

15
sin exp(2i )

32
m

l

l

m

Y  







1
2Y

1
2Re[ ]Y

2
2Y

2
2Re[ ]Y

0
2Y

To read plots: distance from origin corresponds to magnitude (modulus) of 
plotted quantity; colour corresponds to phase (argument).

http://odin.math.nau.edu/~jws/dpgraph/dpgfiles/Yellm/Y22.dpg
http://odin.math.nau.edu/~jws/dpgraph/dpgfiles/Yellm/Y21.dpg
http://odin.math.nau.edu/~jws/dpgraph/dpgfiles/Yellm/Y20.dpg
http://odin.math.nau.edu/~jws/dpgraph/dpgfiles/Yellm/ReY21.dpg
http://odin.math.nau.edu/~jws/dpgraph/dpgfiles/Yellm/ReY22.dpg
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5.5 The vector model for angular 
momentum***

2 2ˆEigenvalues of  are ( 1) ,  with 0,1, 2,L l l l h K

To summarize:

ˆEigenvalues of  are ,  with , , 1,0,1,zL m m l l   h K K

These states do not correspond to well-defined values of Lx and Ly, since these operators 
do not commute with Lz.

l is known as the principal angular momentum quantum number: determines 
the magnitude of the angular momentum

m is known as the magnetic quantum number: determines the component of 
angular momentum along a chosen axis (the z-axis)

Semiclassical picture: each solution corresponds to a cone of angular momentum 
vectors, all with the same magnitude and the same z-component.
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The vector model (2)

Example: l=2

Magnitude of angular momentum is

Component of angular momentum in 
z direction can be

Lx

Ly

Lz

L
⇒ Eigenvalue of L2  is l l1ℏ2=6ℏ2

 l l1ℏ=6ℏ

2ℏ
ℏ
0
−ℏ
−2ℏ

Reason for restriction on values of m  is 
 so L z  does not exceed total angular 
 momentum available.

m=2 ⇒ Lz=2ℏ

m=1 ⇒ Lz=ℏ

m=0⇒ Lz=0

m=−1 ⇒ Lz=−ℏ

m=−2 ⇒ L z=−2ℏ
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6.1 The three-dimensional square well
Consider a particle which is free to move in three 
dimensions everywhere within a cubic box, which 
extends from –a to +a in each direction.  The particle 
is prevented from leaving the box by infinitely high 
potential barriers. x

y
z

Time-independent Schrödinger equation 
within the box is free-particle like:

Separation of variables: take
x, or y, 
or z( , , ) ( ) ( ) ( )x y z X x Y y Z z 

V  V 

V(x)

-a a

0V 

with boundary conditions

Reading: Rae §3.2, B&J §7.4; B&M §5.11

X ±a=Y ±a=Z ±a=0

−
ℏ

2 m
∇ 2 x , y , z =E x , y , z 
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Three-dimensional square well (2)

Substitute in Schrödinger equation:

Divide by XYZ:

Three effective one-dimensional 
Schrödinge equations.

−
ℏ2

2 m {Y Z
d 2 X

d x2 Z X
d 2 Y

d y2X Y
d 2 Z

d z2 }=E X Y Z

−
ℏ2

2 m { 1
X

d 2 X

d x2
 1

Y
d 2 Y

d y2
 1

Z
d 2 Z

d z2 }=E

With E=E xE yE z

−
ℏ2

2 m
d 2 X

d x2
=E x X

−
ℏ2

2 m
d 2 Y

d y2=E y Y

−
ℏ2

2 m
d 2 Z

d z2=E z Z
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Three-dimensional square well (3)

Wavefunctions and energy eigenvalues known from 
solution to one-dimensional square well (see §3.2).

Total energy is

E x=
nx

22 ℏ2

8 ma2
 with nx=1, 2, 3,4, ... Similarly for E y  and E z

Note: We have 3 seperate quantum numbers nx , n y  and nz

E=E xE yE z

=
2 ℏ2

8 ma2 nx
2ny

2nz
2 

This is an example of the power of separation of variables in a 3D problem. Now 
we will use the same technique for the hydrogen atom.
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6.2 The Hamiltonian for a hydrogenic 
atom***

For a hydrogenic atom or ion having nuclear charge +Ze and a 
single electron, the Hamiltonian is

The natural coordinate system to use is spherical polar coordinates.  In this case the 
Laplacian operator becomes (see 2246):

r

+Ze
Note: for greater accuracy we should use the reduced mass 
corresponding to the relative motion of the electron and the nucleus 
(since nucleus does not remain precisely fixed – see 1B2x):

-e

Note spherical symmetry – 
potential depends only on r

This means that the angular momentum about any axis, and also the 
total angular momentum, are conserved quantities: they commute 
with the Hamiltonian, and can have well-defined values in the 
energy eigenfunctions of the system.

Reading: Rae   §§3.3-3.4, B&M Chapter 7, B&J §7.2 and §7.5

H=−
ℏ2

2 me

∇ 2− Z e2

40 r

=
me mN

memN

me= electron mass , mN= nuclear mass

∇ 2 = 1

r 2


 r r 2 

 r  1

r2 sin

 sin 


  1

r2 sin2
2

2 =
1

r2


r r2 

 r − L2

ℏ2 r2

[ H , L2 ]=0 ⇔
d 〈 L2 〉

d t
=0

[ H , L z ]=0 ⇔
d 〈 L z 〉

d t
=0
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6.3 Separating the variables
Write the time-independent Schrődinger equation as:

Now look for solutions in the form

( , , ) ( ) ( , )r R r Y    
Substituting into the Schrődinger equation:

Hr , ,=Er , ,

⇒ −
ℏ2

2 m
1

r2

d
d r r 2 d

d r  L2

2 m r2−
Z e2

40 r
=E

−
ℏ2

2 m
Y  ,[ 1

r2

d
d r r2 d R

d r ] R

2 m r2
L2 Y  ,− Z e2

40 r
RY=E RY

⇒ 1
Y

L2

2 m
Y  ,=E r2−{− ℏ2

2 m
1
R

d
d r r2 d R

d r − Z e2 r
40

}
LHS depends only on  and, RHS depends only on r .
Both sides must equal some constant: 
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The angular equation

We recognise that the angular equation is simply the eigenvalue condition for the 
total angular momentum operator L2:

This means we already know the corresponding eigenvalues 
and eigenfunctions (see §5):

Note: all this would work for any spherically-symmetric 
potential V(r), not just for the Coulomb potential.

1
Y

L2

2 me

Y = ⇒
L2 Y =2 meY

Y  is an eigenfunction of operator L2

We know L2 Y l
m  ,  = l l1 ℏ2 Y l

m  ,

⇒ Angular function Y  is a spherical harmonic and = l l1 ℏ2

2 me
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6.4 Solving the radial equation
Now the radial part of the Schrődinger equation becomes:

Define a new unknown function χ by:

Note that this depends on l, but not on m: it therefore involves the 
magnitude of the angular momentum, but not its orientation.

−
ℏ2

2 me

1
R

d
d r r2 d R

d r =E r 2


Z e2

40

r

−
ℏ2

2 me

1
r2

d
d r r 2 d R

d r [ l l1 ℏ2

2 me r 2 −
Z e2

40 r ]R=E R

R r =
 r 

r

⇒
d R
d r

=
1
r

d
d r

−

r 2 ⇒ r 2 d R

d r
= r

d
d r

−

⇒
d

d r r 2 d R
d r =r

d 2
d r2 

d
d r

−
d
d r

∴  above becomes: −
ℏ2

2 m
d 2
d r2 [ l l1 ℏ2

2 me r 2 −
Z e2

40 r ]=E
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The effective potential

This corresponds to one-dimensional motion with the effective potential

First term:

Second term:

V eff r  =
−Z e2

40 r


l l1 ℏ2

2 me r2

Coulomb attraction:

Force F=−
d V
d r

=
−Z e2

40 r2

'Centrifugal' repulsion: 

Force F =−
d V
d r

=
l l1 ℏ2

2 me r 2 =
L2

2 me r2 =
L2

2 I
= Rotational kinetic energy.

Classically =
me V r 2

me r3 =
me V 2

r

r

V(r)
l  l1 ℏ2

2 me r 2

−Z e2

40 r
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Atomic units***
Atomic units: there are a lot of physical constants in these expressions.  It makes atomic 
problems much more straightforward to adopt a system of units in which as many as 
possible of these constants are one.  In atomic units we set:

In this unit system, the radial equation becomes

Planck constant ℏ = 1(Dimensions [ M L2 T −1 ])
Electron mass me = 1(Dimensions [ M ])

Constant appearing in Coulomb's law 
e2

40

= 1(Dimensions [ M L3T −2 ])

It follows that: 

Unit of length = 40

e2  ℏ2

me

= 5.29177×10−11  m = Bohr radius, a0

Unit of energy =  e2

40

2

me

ℏ2
= 4.35974×10−18  J = 27.21159 eV = Hartree, E h

−
1
2

d 2
d r 2  [ l l1

2 r2 −
z
r ] = E
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Solution near the nucleus (small r)
For small values of r the second derivative and 
centrifugal terms dominate over the others.

Try a solution to the differential equation in this limit as

We want a solution such that R(r) remains finite as r→0, 
so take

−
1
2

d 2
d r 2 

l l1
2r 2  = 0

  rk

⇒  ' '= k k−1r k−2  and 
l l1

r 2 = l l1r k−2

So: −k k−1l l1=0
⇒ k 2

−k−l l1=0
⇒ [kl ] [k−l1 ]=0 ⇒ k=−l  or k=l1

k=l1 ⇒   rl1  as r0 R  r l
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Asymptotic solution (large r)
Now consider the radial equation at very large distances from the nucleus, when both terms 
in the effective potential can be neglected.  We are looking for bound states of the atom, 
where the electron does not have enough energy to escape to infinity:

Inspired by this, let us rewrite the solution in terms of yet another unknown function, 
F(r):

Put: E=−
2

2

−
1
2

d 2
d r 2 =−

2

2
 ⇒

d 2
d r 2 =−2

Solutions: Try =e x
⇒ 2

=2
⇒ =±

Take 0 , general solution. =Ae r
B e− r

Ae r  term is not normalisable ∴ A=0

r  = F r  e− r
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Differential equation for F
Can obtain a corresponding differential equation for F:

This equation is solved in 2246, using the 
Frobenius (power-series) method.

The indicial equation gives   or 1k l l  
1regular solution behaves like  for small .lF r r:

d 
d r

=
d F
d r

e− r
− F e− r

d 2
d r 2 =

d 2 F
d r 2 e− r

−2 d F
d r

e− r
2 F e− r

Substituting in SE and cancelling factors of E− r  gives: 

−
1
2

d 2 F
d r2   d F

d r
−

1
2
2 F[ l l1

2 r 2 −
Z
r ]F =−

1
2
2 F ⇒

d 2 F
d r 2 −

l l1
r2 F = 2 d F

d r
−2

Z
r

F

F r  = r k∑
p

a p r p
=∑

p
a p r pk
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Properties of the series solution

 where  is an integer : 1, 2
Z

n n l n l l


     K

Hence the series must terminate after a finite number of terms.  This happens only if

So the energy is

If the full series found in 2246 is allowed to continue up to an arbitrarily large number of 
terms, the overall solution behaves like

Note that once we have chosen n, the energy is independent of both m (a feature of all 
spherically symmetric systems, and hence of all atoms) and l (a special feature of the 
Coulomb potential, and hence just of hydrogenic atoms).

n is known as the principal quantum number.  It defines the “shell structure” of the 
atom.

(not normalizable)F r ≈e2 r

⇒  r ≈e2 r e− r
= e r

E =−
1
2
2

=−
1
2 Zn 

2
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6.5 The hydrogen energy spectrum and wavefunctions***

2

2
 (in atomic units)

2n

Z
E

n
 

, ( 1), 0, ( 1),m l l l l    K K

For each value of n=1,2,… we have a definite 
energy:

For each value of n, we can have n possible values of 
the total angular momentum quantum number l:

For each value of l and n we can have 2l+1 values of 
the magnetic quantum number m:

l=0,1,2,…,n-1

The total number of states (statistical weight) associated 
with a given energy En is therefore

Traditional nomenclature:
l=0: s states (from “sharp” spectral lines)
l=1: p states (“principal”)
l=2: d states (“diffuse”)
l=3: f states (“fine”)
…and so on alphabetically (g,h,i… etc)

Each solution of the time-independent Schrődinger equation is 
defined by the three quantum numbers n,l,m 

E  in units Z 2

2
Eh

∑
l=0

n−1

2 l1=n2

l=0 l=1 l=2 l=3

0

-1

− 1
4

− 1
9

− 1
16

all 
x3

all 
x5

all 
x7

2 p ⇒ n=2 , l=1
3 s ⇒ n=3 , l=0
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The radial wavefunctions
Radial wavefunctions Rnl depend on principal 
quantum number n and angular momentum quantum 
number l (but not on m)

Full wavefunctions are:

Normalization chosen so that:

Note:

Probability of finding electron between radius r and r+dr is:

Only s states (l=0) are finite at the 
origin.

Radial functions have (n-l-1) zeros.

R10r =2 Z
a0


3
2 e

−Z r
a0

R21r =
1

3  Z
2 a0


3
2  Z r

a0
e
−Z r
2 a0

R20r =2 Z
2 a0


3
2 1− Z r

2 a0
e
−Z r
2 a0

R32 r =
4

2710  Z
3 a0


3
2  Z r

a0

2

e
−Z r
3 a0

R31r =
42

9  Z
3 a0


3
2 1− Z r

6 a0
 Z r

a0
e
−Z r
3 a0

R30r =2 Z
3 a0


3
2 1− 2 Z r

3 a0

 2 Z 2 r2

27 a0
2 e

−Z r
3 a0

n l m r , ,=Rn l r Y l
m
 ,

∫
0

∞
r 2 Rn l

2
r  dr∫

0



sin d  ∫
0

2

d∣Y l
m
 ,∣2=1

But: ∫
0



sin d  ∫
0

2

d∣Y l
m
 , ∣2=1 for spherical harmonics.

⇒ ∫
0

∞
r2 Rn l

2
r dr=1

r2 Rn l
2
r =n l r  since: n l=r Rn l r 

i.e. r2 Rn l r   is the probability per unit length of finding the 
electron at a radius r . NOT the probability per unit volume of 

finding the particle at a given point in space: ∣n l m∣
2
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Comparison with Bohr model***

,  1, 2,3,zL n n h K

2
0

0,  Bohr radiusn

n a
r a

Z
 

Angular momentum (about any axis) 
assumed to be quantized in units of  
Planck’s constant:

Electron otherwise moves according 
to classical mechanics and has a 
single well-defined orbit with radius

Energy quantized and determined 
solely by angular momentum:

Bohr model Quantum mechanics

2

2
,  Hartree

2n h h

Z
E E E

n
  

,  , ,zL m m l l  h K

02
0

1 ,  Bohr radius
Z

ar n a
 

2

2
,  Hartree

2n h h

Z
E E E

n
  

Angular momentum (about any axis) shown 
to be quantized in units of  Planck’s 
constant:

Energy quantized, but is determined 
solely by principal quantum number, 
not by angular momentum:

Electron wavefunction spread over all 
radii.  Can show that the quantum 
mechanical expectation value of the 
quantity 1/r satisfies
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6.6 The remaining approximations

• This is still not an exact treatment of a real H atom, because we have 
made several approximations.
– We have neglected the motion of the nucleus.  To fix this we would need to 

replace me by the reduced mass μ (see slide 1).

– We have used a non-relativistic treatment of the electron and in particular have 
neglected its spin (see §7).  Including these effects  gives rise to 

• “fine structure” (from the interaction of the electron’s orbital motion with its spin), and 
• “hyperfine structure” (from the interaction of the electron’s spin with the spin of the 

nucleus)
– We have neglected the fact that the electromagnetic field acting between the 

nucleus and the electron is itself a quantum object.  This leads to “quantum 
electrodynamic” corrections, and in particular to a small “Lamb shift” of the 
energy levels.
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7.1 Atoms in magnetic fields
Interaction of classically orbiting 
electron with magnetic field:

v

Orbit behaves like a current loop:

In the presence of a magnetic field B, classical interaction energy is: 

r

Corresponding quantum mechanical expression (to a good approximation) involves the 
angular momentum operator:

μ

Reading: Rae Chapter 6; B&J §6.8, B&M Chapter 8 (all go further than 2B22)

Loop current = −e v
2 r

( -ve sign because chage =−e )

Magnetic moment = current × area

= −e v
2 r  r2

=
−e

2 me

me v r=−B
L
ℏ

Where B=
e ℏ

2 me

(The Bohr magneton)

E = − ⋅ B = B
L
ℏ
⋅ B

Contribution to Hamiltonian involving B =  H =
B

ℏ
L ⋅ B 
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Splitting of atomic energy levels

Suppose field is in the z direction.  The Hamiltonian operator is

0
ˆ ˆ ˆB z

z

B
H H L

 
h

We chose energy eigenfunctions of the original atom that are eigenfunctions of Lz so these 
same states are also eigenfunctions of the new H.

0 0
ˆ ;

ˆ .

m m

z m m

H E

L m

 

 



 h ⇒ Hm = H 0m
B B z

ℏ
Lzm

= E0mB B z m

New 
eigenvalue.
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Splitting of atomic energy levels (2)

0B 

Predictions: should always get an odd number of 
levels.  An s state (such as the ground state of 
hydrogen, n=1, l=0, m=0) should not be split.

(2l+1) states with same 
energy: m=-l,…+l

(Hence the name 
“magnetic quantum 
number” for m.)

0B

E=E0

m=l E=E0lB B z

m=l−1

m=−l E=E0−lB Bz
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7.2 The Stern-Gerlach experiment***

Study deflection of atoms in inhomogeneous magnetic field.  Force on 
atoms is

Gerlach

N

S

Produce a beam of atoms with a single electron in an s state (e.g. 
hydrogen, sodium)

Results show two groups of atoms, deflected in 
opposite directions, with magnetic moments

Consistent neither with classical physics (which would predict a 
continuous distribution of μ) nor with our quantum mechanics so 
far (which always predicts an odd number of groups, and just one 
for an s state).

F=∇  ⋅B 
⇒  if   is aligned with B , the atom is pushed towards high fields. 
If   is anti-aligned with B  atom is pushed towards low fields.

 = ± B

http://images.google.co.uk/imgres?imgurl=www.th.physik.uni-frankfurt.de/~jr/gif/phys/gerlach.jpg&imgrefurl=http://www.th.physik.uni-frankfurt.de/~jr/physlist.html&h=600&w=435&prev=/images%3Fq%3Dgerlach%26svnum%3D10%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8
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7.3 The concept of spin***
Try to understand these results by analogy with what we know about the ordinary (“orbital”) 
angular momentum: must be due to some additional source of angular momentum that does 
not require motion of the electron.  Known as “spin”.

Introduce new operators to represent spin, assumed to have same 
commutation relations as ordinary angular momentum:

Goudsmit Uhlenbeck

Corresponding eigenfunctions and eigenvalues:

Pauli

(will see in Y3 that these equations can be derived 
directly from the commutation relations)

[ S x , S y ]=i ℏ S z etc.  Where  S x , S y , S z  are components of spin angular momentum.

Define: S 2
=
S x

2

S y

2

S z

2

S 2
= s

ms
= s s1 ℏ2s

m s ms = magnetic spin quantity
S zs

ms
=ms ℏs

ms

Find S  does not have to be an integer, but can be an
integer or half integer and ms can vary from S  to −S
in integer steps.

http://images.google.co.uk/imgres?imgurl=w3.hep.uiuc.edu/~leigh/class/spin/mugs/Uhlenbeck.jpeg&imgrefurl=http://w3.hep.uiuc.edu/~leigh/class/spin/mugs/mugs.html&h=232&w=190&prev=/images%3Fq%3Duhlenbeck%26svnum%3D10%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8
http://images.google.co.uk/imgres?imgurl=www.childrenofthemanhattanproject.org/HF/Photos%2520-%2520Men/goudsmit.jpg&imgrefurl=http://www.childrenofthemanhattanproject.org/HISTORY/H-06f.htm&h=851&w=540&prev=/images%3Fq%3Dgoudsmit%26svnum%3D10%26hl%3Den%26lr%3D%26ie%3DUTF-8%26oe%3DUTF-8%26sa%3DN


2222 Quantum Physics 2006-7 141

Spin quantum numbers for an electron

General interaction with magnetic field:

From the Stern-Gerlach experiment, we know that electron spin along a 
given axis has two possible values.

So, choose

So, have Spin angular momentum is 
twice as “effective” at 
producing magnetic moment as 
orbital angular momentum.

S=1
2

⇒ ms=−s ..........s − ±
1
2

But we also know from Stern-Gerlach that magnetic moments associated with
the two possibilities are  = ± B

 = ± 2 msB

H =
H 0 

B

ℏ
B ⋅  L ⋅ g S 

g=2(Dirac's relativistic theory)
g=2.00231930437 (Quantum Electrodynamics)
g=g -factor (Measures how effective this particular form of angular momentum is at 

producing a magnetic moment.)
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A complete set of quantum numbers
Hence the complete set of quantum numbers for the electron in the H atom is: n,l,m,s,ms.

Corresponding to a full wavefunction

Note that the spin functions χ do not depend on the electron coordinates r,θ,φ; they 
represent a purely internal degree of freedom. 

H atom in magnetic field, with spin included, and field in the z direction:

n , l ,m , s ,ms
r , ,  = Rn , l  r  Y l

m  ,  S
ms

i.e. 2 states, with ms=±
1
2

 for each one we found before.

H =
H 0 

B Bz

ℏ
 Lzg S z 

⇒ Change in energy is B Bz mg ms  ≃ B B z m2 ms 
For ground state l=0, m=0 , get E = ± B B z  as observed.
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7.4 Combining different angular momenta

1 1
2 2,

, ,j

j l l

m j j

  

  K

So, an electron in an atom has two sources of angular momentum:

•Orbital angular momentum (arising from its motion through the 
atom)

•Spin angular momentum (an internal property of its own).

To think about the total angular momentum produced by 
combining the two, use the vector model once again:

Lx

Ly

Lz

Vector addition between orbital angular 
momentum L (of magnitude L) and spin S (of 
magnitude S): produces a resulting angular 
momentum vector J: quantum mechanics says its 
magnitude lies somewhere between |L-S| and 
L+S.(in integer steps). L

S

L+S

|L-S|

For a single electron, corresponding `total 
angular momentum’ quantum numbers are

Determines length of resultant 
angular momentum vector

Determines orientation

 J L S

L

S

Eigenvalues of J = j  j1 ℏ2

Eigenvalue  of J z=m j ℏ

m j=3/2

m j=1/2

m j=−1/2

m j=−3/2

e.g. l=1 , j=3
2

,
1
2
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Example: the 1s and 2p states of hydrogen
The 1s state:

The 2p state:

l=0 , s=1
2

⇒ 1 possibility j=1
2

Purely spin angular momentum. m j=±
1
2

n=2  , l=1 , S=1
2

Now 2 possibilities: j=1
2

, 3
2

; m j=− 1
2

, 1
2 ,− 3

2
, −

1
2

, 1
2

, 3
2

⇒  Get a doublet of states adding 2 different values of m j , and a quartet of states
adding 4 different values of m j

Even in no B - field. j=
1
2

 and j=
3
2

 states have different energies.

(Fine structure effects.)
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Combining angular momenta (2)
The same rules apply to combining other angular momenta, from whatever source.  

For example for two electrons in an excited state of He atom, one in 1s state and one in 2p state 
(defines what is called the 1s2p configuration in atomic spectroscopy):

First construct combined orbital angular momentum L of both electrons:

Then construct combined spin S of both electrons:

Hence there are two possible terms (combinations of L and S):

…and four levels (possible ways of combining L and S to get different total angular 
momentum quantum numbers)

1 1
1 1 2 22 20; ;         1;l s l s   

L  must be between ∣L1−L2∣=1 and L1L2=1
⇒ S=0 ,1

∣S 1S 2∣=0 and S1S 2=1
⇒ S=0 , 1

L=1 , S=0 ⇒ J =1
L=1 , S=1 ⇒ J =0 ,1 ,2
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Term notation
Spectroscopists use a special notation to describe terms and levels:

2 1S
JL

•The first (upper) symbol is a number giving the number of spin states 
corresponding to the total spin S of the electrons

•The second (main) symbol is a letter encoding the total orbital angular momentum 
L of the electrons:

•S denotes L=0
•P denotes L=1
•D denotes L=2 (and so on);

•The final (lower) symbol gives the total angular momentum J obtained from 
combining the two.

Example: terms and levels from previous page would be:

L=1 , S=0 ⇒
1 P1  (Singlet) 

L=1 , S=1 ⇒
3 P0 , 3 P1 , 3 P2
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7.5 Wavepackets and the Uncertainty Principle 
revisited (belongs in §4 – non-examinable)

Can think of the Uncertainty Principle as arising from the structure of wavepackets.  Consider a 
normalized wavefunction for a particle located somewhere near (but not exactly at) position x0

Can also write this as a Fourier transform (see 2246):
2

( )k%

Probability density:

k

(expansion in eigenstates of momentum)

 x =2 2
−

1
4 exp [−x−x0

2

4 2 ]
∣ x ∣2=22 

−
1
2 exp [−x−x0 

2

22 ]

2
( )x

xx0

= standard 
 deviation.

 x = 1

2
∫
−∞

∞
 k ei k x dk
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7.5 Wavepackets and the Uncertainty Principle revisited 
(belongs in §4 – non-examinable) (cont.)

Compare  x =∑ann x 

then  k = 1

2
∫
−∞

∞
 x e−i k x dx

Compare an=∫
−∞

∞
 x ∗

x dx

ei k x
⇒ n x  (Eigenfunction)

 k  (Expansion coefficient)
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Fourier transform of a Gaussian
k = 1

2
∫
−∞

∞

 x exp [−i k x ] dx

= 1

2
2 2

− 1
4∫
−∞

∞

exp [−  x−x0
2

4 2 ]exp [−i k x ] dx

= 1

2
2 2

− 1
4 exp [−i k x0 ]∫

−∞

∞

exp [−  x−x0
2

42 −i k  x−x0 ]dx

= 1

2
2 2

− 1
4 exp [−i k x0 ]∫

−∞

∞

exp [− [ x−x02 i k 2 ]2

4 2
−k 22 ]dx

= 1

2
2 2

− 1
4 exp [−i k x0 ] exp [−k 2 2 ]∫

−∞

∞

exp [− x '2

4 2 ]dx  With: x '=x−x02 i k  2 , dx '=dx

= 1

2
2 2

− 1
4 exp [−i k x0 ] exp [−k 2 2 ]2

= 22 −
1
4 exp [−i k x0 ]exp [−k 22 ]

∣k ∣2= 2 2 −
1
2
exp [−2 k 22 ]

∫
−∞

∞

∣k ∣2 dk= 
22  22 −

1
2=1 ∫

−∞

∞
exp [− x2

a2 ]dx=a , ∫
−∞

∞
x2 exp[− x2

a2 ]dx=a3

2
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Wavepackets and Uncertainty Principle (2)

In fact, can show that this form of wavepacket (“Gaussian wavepacket”) minimizes the 
product of Δx and Δp, so:

Mean-squared uncertainty in postion

Mean-squared uncertainty in momentum:

Mean momentum:

 x2=〈  x−x0 
2 〉=∫

−∞

∞

 x−x0 
2∣x ∣2 dx=2

p=ℏ k ∣k ∣2  is symmetric about k=0 ⇒ 〈 p 〉=0

 p2=〈 p2 〉=ℏ2 〈k 2 〉= ℏ2

4 2

⇒  x2 p2=2 ℏ
2

42=
ℏ2

4

 x p 
ℏ
2

Rigorous statement of 
uncertainty principle for 
position and momentum.
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Wavepackets and Uncertainty Principle (3)

Summary
Three ways of thinking of Uncertainty principle:
(3) Arising from the physics of the interaction of different types of measurement apparatus with the 

system (e.g. in the gamma-ray microscope);
(4) Arising from the properties of Fourier transforms (narrower wavepackets need a wider range of 

wavenumbers in their Fourier transforms);
(5) Arising from the fact that x and p are not compatible quantities (do not commute), so they 

cannot simultaneously have precisely defined values.

General result (see third year, or Rae §4.5):

For general non-commuting operators Q , R

q r1
2
∣〈 [ Q , R ] 〉∣

Where: q  and  r  are RMS uncertainties in Q  and R


