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YOU may attempt as many questions as you wish and all questions carry equal marks. Except for the 

Calculators ARE permitted in this examination. 

award of a bare pass, only the best 3 questions answered will be counted. 

Notation 

The following notation is used throughout unless otherwise stated. The pressure, density, gravitational 
potential and adiabatic exponents are denoted by p ,  p,  +, rl and r3 respectively. The equilibrium values of 
these quantities are sometimes distinguished using a zero subscript. The position vector is denoted by r or 
x, the time by t ,  the velocity by U, the surface radius of a spherical configuration by R, and the gravitational 
constant by G. Vectors are denoted by boldface type. 

Astronomical and Physical Data 

Mass of the Sun M~ 2.0 x 1030 kg 
Surface radius of the Sun Ra 7.0 x 10' m 
Luminosity of the Sun La 3.8 x Js-l 
Gravitational constant G 6.67 x 10-l' kg-1m3s-2 
Speed of light in a vacuum 3.0 x 10' ms-' c 

Standard Formulae 

Candidates may assume the following set of basic equations and formulae: 

In spherical polar coordinates (r,  8, $) 

v+ = 

and 
+ -.(sinO$) 1 + ___- 1 a2+ 

r2  sin 6' 86' r2 sin2 6' adz 

l a  1 au$, v . --(r2uT) + -$--&(uesin8) + -- 
r2 dr r sin 8 dB r sin 8 84 
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and 
1 v x u  = ~ 

r2 sin 8 

e,  reg rsinBe+ 
alar alae 8/84 1 . 

ur rug rsin8u4 

The spherical harmonic q"(t9,cj) = P / m ' ( ~ ~ ~  8) exp(imq5), where P,!"' denotes the associated Legendre func- 
tion, satisfies the equation 

+ Z(Z+ l)qm = 0 ,  
l a  aqm 1 a2q.I" -- (sineas) + -- sine dB sin2 e 6'4' 

where 2 is a non-negative integer and m is an integer such that Iml 5 1. Further 

V2(qmr') = o V2(Kmr-'-l ) = 0 .  

In cylindrical polar coordinates (r,  4, z ) ,  with U = ( U T ,  U+, U,) ,  

I d  1 a u +  au, 1 v.u = - - (TUr) + -- + - ,  v x u  = - 
r dr  r 84 dz r 

The equation of motion for an inviscid fluid may be assumed in the form 

Du 
Dt 

p- = - v p  - pV$. 

The continuity equation may be assumed in the form 

dP - at + V . ( p u )  = 0 .  

The energy equation may be assumed in the form 

1 D~ ' 1 p D p  - p(r3-i) (. - ; ~ a )  , 
Dt p Dt 

where E is the heat generated per unit mass, and F is the heat flux. For adiabatic motion, the rigA-hand 
side of this equation is zero. 

The gravitational potential satisfies Poisson's equation, V2$ = 47rGp, which may be assumed to  have the 
solution 

where the integration is taken over the fluid volume V, and dV' denotes the volume element d3r' 
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1 A compressible fluid is stratified in uniform gravitational field, with gravitational acceleration go directed 
downwards. Equilibrium pressure po(z) and density po(z) depend on vertical coordinate z only; the axis 
z points upwards. 

(a) Show that in hydrostatic equilibrium, 

Explain the physical nature of this hydrostatic relation. 

(b) Consider a small vertical displacement of a small fluid element from its equilibrium position at z = 
0. Assume that the fluid element is always in pressure equilibrium with surrounding fluid, and the 
surrounding fluid remains undistorted. 

Show that in the adiabatic approximation (i.e. discarding any heat exchange between the fluid element 
and the surrounding fluid), the sinal1 variations of pressure 6p and density 6p in the fluid element satisfy 

where rl is the adiabatic exponent. Discuss briefly, in which circumstances the adiabatic approximation 
is applicable for describing astrophysical fluids. 

(c) Show that after such a displacement by an amount 6z in vertical direction, the density in the fluid 
element will differ from the density of the fluid which is around it by an amount 

where 

Explain, qualitatively, how the motion of the fluid element will develop after this initial displacement, 
when (i) N 2  > 0 and (ii) N 2  < 0. 

(d) Show that linearized equation of motion of this particular fluid element can be written as 

-p/go = -po(O)N2(0) 6z.  

Show further that  the solution to this equation is 6z(t )  = Aexp(iwt), with w2 = N2.  When N 2  > 0, 
what is the restoring force of the resulted oscillatory solution? When N 2  < 0, you have a solution which 
grows exponentially with time. Discuss briefly the physical nature of this solution. Why our analysis is 
not applicable for predicting correctly the development of this solution at  large t? 
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2 (a) Starting from the equation of motion in a frame rotating uniformly with angular velocity a, 
d u  1 
- = --Vp - V$ - 2 a x u  - O x ( O x r ) ,  
dt  P 

where dldt  denotes the material derivative in the rotating frame, derive the equation for hydrostatic 
equilibrium of the fluid in the form 

- V p  = -VQ,  1 
P 

where the total effective potential Q, should be defined and its form carefully derived. Explain why, 
in the equilibrium, pressure p is constant, and also density p is constant, at any surface where Q, is 
constant. 

(b) Explain why @ is constant over the surface of a rotating fluid body. Show further that for a slow 
rotation, the relative difference ARIR between the equatorial radius R + AR and the polar radius R 
can be estimated as 

AR 1R2R3 -- - -- 
R 2 G M '  

Evaluate the magnitude of this relative difference for Jupiter, which has rotation period 10 hours, radius 
0.1 solar radii, and mass solar masses [you are referred to the solar data given on page 1 of this 
paper]. 

Explain, qualitatively, how the last result will be modified if we take into account a distortion of the 
spherically-symmetric gravitational field induced by the rotational distortion of the mass distribution 
inside the planet. 

(c) A binary star system consists of two stars with masses MI and M2 separated by a distance a,  orbiting 
each other in circular orbits. Show that the period 27r/fl of the system is such that 

Assuming that the gravitational potential of each star can be approximated by that of a point mass at 
the centre of the star, and taking Cartesian coordinates such that the x-axis runs through the centres 
of the two stars and the orbits are in the z = 0 plane, derive the Roche form of the potential a. Sketch 
contours of constant Q, in the z = 0 plane, and explain the significance of the Roche lobes. 
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3 A gaseous configuration moves under its internal pressure and self-gravity. Suppose that p = PO + P', 
p = PO + p' and $ = $0 i- $', where p',  p' and 4' are the perturbations to pressure, density and 
gravitational potential respectively, and po l  po  and 40 are equilibrium quantities. The perturbations 
and velocity U are small, so that quadratic and higher order expressions involving them may be neglected. 
By linearizing the basic fluid equations show that 

aU 
Po- = -Vp' - p'V$o -POD*', 

a t  

aP' - = -V. (pou) , at 
V2$' = 4 ~ G p ' ,  

and, in the adiabatic approximation, 

1 aP' 
a t  - + U .  vpo = rlE ($ + vpo . 

Po 

Now prove that the linear equations of adiabatic radial stellar oscillations can be written as 

dU 1 

dr POC 
U - T P l ,  

dPl 
- dr (W2 - N 2  4- 47rGpo) pou - $pi, 

where U ( r )  and pl ( r )  describe radial displacements 6r and Eulerian pressure perturbations p' through 

6r = i-U(r)exp(iwt) and p' =pl(r)exp(iwt). 

You should assume perturbations of the form p' = p l ( r )  exp(iwt) and $J' = $Jl(r)exp(iwt). w is the 
angular frequency, U = iw6r ,  i- is unit vector along r ,  c is adiabatic sound speed, go is equilibrium 
gravitational acceleration, and N is Brunt-V&is&l& frequency. You may use the relations 

[Hint: By comparing the continuity and the Poisson equations, show that d$l/dr = -4rGpoUI. 

Give brief mathematical and physical explanations why these equations are not adequate for describing 
the excitation and damping of stellar oscillations. 
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4 A fluid has motion and variations only in one spatial direction x. By appropriately combining the 
momentum and continuity equations in their standard form (with no external forces), and the adiabatic 
energy equation which you may assume in the form 

U being the internal energy per unit mass, derive the momentum and energy equations in conservative 
form: 

- (pu) d + - ( P u 2 + P )  d = 0, 
dX at 

pU+-pu  + - pu U + - + - U 2  = 0. ”( d t  : 2> L( ( p . 2  >> 
Hence deduce the jump conditions for a steady shock: 

2 PlUl = p2u2 

P I U 1  + P l  = p2u; +p2 
u1+-+-u; P l  1 = uz+-+-u; P2 1 

P1 2 P2 2 
where subscripts 1 and 2 denote conditions just upstream and just downstream of the shock. 

For an ideal gas, U = (I’ - l ) - l p / p ,  where I’ is the adiabatic exponent. Show that for a strong shock, 
for which the upstream Mach number Ad1 >> 1, the jump conditions imply 

P2 r + l  U1 

p1 r-1 u2 
2rn1; E = - .  

P1 r+1 

_ -  - _  

Consider the following highly simplified model based on the above. The Sun loses mass at a rate M 
per unit time in the form of the solar wind. At the orbit of the earth the wind is supersonic and the 
measured velocity is U E .  At a greater distance r, from the Sun, the wind encounters a strong stationary 
shock. At an even greater distance, rh, the wind encounters the heliopause, the boundary between the 
solar wind and the interstellar medium (which are assumed not to interpenetrate). Assume that the 
speed in the wind is constant in the supersonic regime, and r = 5/3. Deduce that the shock is located 
at 

Between the shock and the heliopause, p and pu2 + p  are essentially constant, and the speed U declines 
rapidly with distance from the Sun, so that pu2 + p  = p,, where p ,  is the pressure in the interstellar 
medium. Show that 

1 / 2  

r, = (2) 
Assuming that A? is constant over the Sun’s main-sequence lifetime, show that the location of the 
heliopause varies slowly with time as 

‘rh t1/3 . 

Taking h?f = 10-13Ada per year, UE = 4 x IO5 ms-’, the age of the Sun to be 5 x IO9 years, and p,  to 
be Nm-2 (appropriate to a temperature of 1041< and a density of I O 5  atoms m-3)1 estimate the 
present positions of the shock and the heliopause. 

[Turn pagel 
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5 Write briefly on two of the following topics: 
(a) differential rotation and meridional circulation in stars; 
(b) solar seismology; 
(c) formation of supersonic flows in compressible fluids; 
(d) nonlinear acoustic waves and shocks. 

[End of paper] 
S. V. Vorontsov 
A. G. Polnarev 
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