
Answers to 3C26/2004.

1. (Unseen Problem.) ∫
| Ψ |2 dτ = 1

gives

N2
∫ ∞

0
e−rr2dr

∫ 2π

0
dφ

∫ +1

−1
(9c4 − 6c2 + 1)dc = 1

or
32πN2/5 = 1

N =

√
5

32π
[4]

Expectation value: We require ∫
Ψ∗r2Ψdτ.

Integral is the same but with the radial integral replaced by
∫
e−rr4dr = 4!.

Answer is
N2 × 16π × 24/5 = 12 [3]

(length units squared)

2. (Bookwork.)

Two observables are Compatible if they can be assigned precise values si-
multaneously. [1]

Consider two different observables represented by Hermitian operators Â
and B̂. A precise value λ is assignable to Â only if the system is in an
eigenstate of Â with eigenvalue λ. Likewise, a precise value µ can be assigned
to B̂ only if it is in an eigenstate of B̂ with eigenvalue µ. Therefore Â and B̂
are compatible only when the system is in an eigenstate of both observables,
a simultaneous eigenstate. Let this state have state vector ψλµ. Then

Âψλµ = λψλµ (i)

and
B̂ψλµ = µψλµ (ii)

Operate on (i) on the left with B̂

B̂Âψλµ = B̂λψλµ = µλψλµ
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Operate on (ii) on the left with Â

ÂB̂ψλµ = Âµψλµ = λµψλµ

Subtract the equations

(ÂB̂ − B̂Â)ψλµ = (λµ− µλ)ψλµ = 0.

for a non-trivial solution we must have

ÂB̂ − B̂Â = 0. [5]

3. (Bookwork.) An operator Â is Hermitian if for suitable functions f and g∫
f ∗Âgdτ =

∫
(Âf)∗gdτ [2]

Consider two eigenstates i and j:

Âψi = λiψi (1)

Âψj = λjψj (2)

Multiply (1) by ψ∗j on the left and integrate:∫
ψ∗j Âψidτ =

∫
ψ∗jλiψidτ = λi

∫
ψ∗jψidτ (3)

Multiply the complex conjugate of (2) by ψi on the left and integrate :∫
(Âψj)

∗ψidτ = λ∗j

∫
ψj

∗ψidτ (4)

But Â is Hermitian, so the LHS is∫
ψ∗j Âψidτ

Subtract (3) and (4), and since their LHS are identical,

(λi − λ∗j)
∫
ψ∗jψidτ = 0.

Case i = j : Since the integral
∫
ψ∗iψidτ is non-zero.

λj = λ∗j

and the eigenvalues are real. [3]

Case i 6= j : Provided λi 6= λj, ∫
ψ∗jψidτ = 0

and they are orthogonal. [2]
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4. (From lectures.)

What is meant in quantum mechanics by the phrase Collapse of the
Wave Function? [2]

A quantum system resides in general in a superposition of eigen-
states until a measurement is made. The measurement causes
the system to jump irreversibly with a certain probability into
one of its eigenstates. The probability of jumping into a particu-
lar eigenstate is given by the squared modulus of its probability
amplitude. This is known as collapse or reduction of the wave
function.

What is the Copenhagen Interpretation of quantum mechanics ? [2]

The Copenhagen Interpretation, associated with Nils Bohr, places
the emphasis on measurement. According to this doctrine, quan-
tum mechanics cannot answer the question of what is happening
in detail in an experiment. But if an experiment is carried out
with a full specification of the entire apparatus used, the sur-
rounding environment and the precise procedure adopted then
quantum mechanics can predict the probability of a particular
outcome, i.e. the result of the experiment.

Explain, giving an example which illustrates your explanation, what is
meant in quantum theory by Complementarity. [3]

(a) Complementarity - Mutually exclusive descriptions (e.g. wave,
particle) can be applied to a quantum system but not simultane-
ously. The wave nature and corpuscular nature of a particle are
complementary aspects and never come into conflict in an experi-
mental situation. Example - in the double slit experiment we can
either observe an interference pattern between waves or we can
determine trajectories of particles. But one excludes the other
- the determination of trajectories destroys the interference pat-
tern; the creation of an interference pattern precludes a precise
particle trajectory.

[Could also cite as an example the beam-splitter experiment with
semi-silvered mirrors, which is essentially the same physics.]

5. For eigenvalues λ

(
h̄

2
cos θ − λ)(− h̄

2
cos θ − λ)− h̄2

4
sin2 θ = 0

or

λ2 − h̄2

4
(cos2 θ + sin2 θ) = 0
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λ = ± h̄
2
. [4]

(Bookwork as far as here.) (Unseen problems, next parts)

Spin polarised in n̂ direction:

θ = π/3

Result is spin-up in z−direction with probability

cos2 π/6 = 0.75 [1]

(or spin-down in z−direction with probability

sin2 π/6 = 0.25)

Second measurement immediately after the first: the measured direction
of the spin component is the same as that in the first measurement with
probability 1 because the wave function has collapsed into this eigenstate
as a result of the first measurement. [2]

6. (Unseen Problem)

H =
(

0 0
0 1

)

λV =
(
λ −λ
−λ 0

)
From these definitions,

E1 = 0, E2 = 1

W1 = 0 + λ+ λ2(
1

0− 1
) = λ− λ2

In a similar fashion
W2 = 1 + λ2 [6]

7.
J× J = ih̄J

[J2, Jz] = 0.
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[2]

If J+ and J− are defined by

J+ = Jx + iJy ; J− = Jx − iJy,

show that
[Jz, J+] = h̄J+ ; [Jz, J−] = −h̄J−,

and hence that J+ | j,m > and J− | j,m > are proportional to | j,m +
1 >and | j,m− 1 > respectively.

Jz(Jx + iJy)− (Jx + iJy)Jz = JzJx − JxJz + i(JzJy − JyJz)

Using the commutation relations this gives

ih̄Jy + i2h̄(−Jx)

= h̄(Jx + iJy) = h̄J+.

Similarly,

Jz(Jx − iJy)− (Jx − iJy)Jz = JzJx − JxJz − i(JzJy − JyJz)

Using the commutation relations this gives

ih̄Jy − i2h̄(−Jx)

= −h̄(Jx − iJy) = h̄J−.
[2]

(JzJ+ − J+Jz) | j m >= h̄J+ | j m >

JzJ+ | j m > −J+mh̄ | j m >= h̄J+ | j m >

JzJ+ | j m >= (m+ 1)h̄J+ | j m >

i.e. J+ | j m > is an eigenvector of Jz with eigenvalue m + 1. In
similar fashion, J− | j m > is an eigenvector of Jz with eigenvalue
m− 1.

These relations tell us that J+ | j,m > and J− | j,m > are propor-
tional to | j,m+ 1 > and | j,m− 1 > respectively. [2]

(Bookwork down to here; what follows is an application candi-
dates have not seen before.)

If J = S
S± | 1

2
,m >= h̄

√
3
4
−m(m± 1) | 1

2
,m± 1 >
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Applying this formula gives

S+α = 0; S+β = h̄α; S−α = h̄β; S−β = 0. [4]

Calculating matrix elements α†S±β etc one obtains matrices

S+ = h̄
(

0 1
0 0

)

S− = h̄
(

0 0
1 0

)
Then using

2Sx = S+ + S− 2iSy = S+ − S−

Sx =
h̄

2

(
0 1
1 0

)

Sy =
h̄

2i

(
0 1
−1 0

)
[4]

H = E0(S
2
x + S2

y − h̄Sx)

H =
E0h̄

2

2

(
1 −1
−1 1

)

Let k = E0h̄
2/2 then

H =
(
k −k
−k k

)
To find eigenvalues,

(k − x)(k − x)− k2 = 0

x(x− 2k) = 0

x = 0 or x = 2k. For x = 0, the normalised eigenvector
(
c
d

)
with

c2 + d2 = 1 is found from(
k −k
−k k

) (
c
d

)
= 0

This gives

v =
1√
2

(
1
1

)
For x = 2k we obtain
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v =
1√
2

(
1
−1

)
[6]

The general form is thus

ψ(t) =
A√
2

(
1
1

)
+

B√
2

(
1
−1

)
e−iE0h̄2t/h̄

[3]

where A and B are constants.

At t = 0,

ψ(0) =
A√
2

(
1
1

)
+

B√
2

(
1
−1

)
Hence

A =
1√
2

( 1 1 )
(

1
0

)
=

1√
2

Probability of finding x = 0 is 0.5 Probability of finding x = E0h̄
2

is also 0.5, as calculation will verify. [3]

Thus

ψ(t) = 1
2

(
1
1

)
+ 1

2

(
1
−1

)
e−iE0h̄t

This equals ψ(0) when e−iE0h̄t = 1 or

t =
2nπ

E0h̄
[4]
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8. (From material presented in lectures)

Principle of Superposition: If the state vector ψ1 corresponds to
one possible state of a quantum system and the state vector ψ2 to
another, then any linear superposition

ψ = C1ψ1 + C2ψ2

where C1 and C2 are complex constants, is also a state vector
corresponding to a possible state of the system. [2]

Entanglement.

This is a property of correlated many-particle systems. The wave
function cannot be expressed as a simple product of one-particle
functions. Measurements cannot be made on one particle without
affecting the others. (Example is the S = 0 spin state of two
fermions; the separate spin components of each particle are not
defined until after a measurement has been made and the two-
particle wave function collapses. For full marks, candidates could
use this example to illustrate the concept.) [2]

Non-locality. This is a property of entangled states. Action can be
transmitted from one place to affect simultaneously the situation
at another arbitrarily distant one. [2]

Classic example is a pair of spin-1/2 particles in a state of total
spin S=0. The individual spin components are not defined; all
that is known is that they are different; one up, the other down.
The particles move apart; measurement of the spin component of
one of them immediately fixes the spin component of the other,
even though they may be separated by a distance such that no
subluminary signal could pass between them. The particles are
correlated at all separations.

[Could also quote the example given by Einstein, Podolsky and
Rosen of a particle separating into two identical fragments which
move apart; or that of a pair of polarised photons.]

As above, candidates could use either of these example to explain
the concept.

Qubits. Any two-state system can be used to define bits or binary
digits by assigning 0 to one of the states and 1 to the other. A
quantum system can reside in a superposition of 0 and 1 with
different probability amplitudes

Ψ = C1 | 1 > +C2 | 0 >
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This is known as a qubit. [2]

The Bell states are the four superpositions

| Ψ+ >=
1√
2
(| 1 >| 0 > + | 0 >| 1 >)

| Ψ− >=
1√
2
(| 1 >| 0 > − | 0 >| 1 >)

| φ+ >=
1√
2
(| 1 >| 1 > + | 0 >| 0 >)

| φ− >=
1√
2
(| 1 >| 1 > − | 0 >| 0 >)

Photon A is in the state C1 | 1 > +C2 | 0 > and (B,C) are in the
state | Ψ− > .

The three-photon state of A,B and C is then

| Ψ >=
1√
2
[C1 | 1 >| 1 >| 0 > +C2 | 0 >| 1 >| 0 > −C1 | 1 >| 0 >| 1 >

−C2 | 0 >| 0 >| 1 >] [5]

The states of A,B can be expressed as linear combinations of Bell
states, e.g.

| 1 >| 1 >=
1√
2
(| φ++ | φ−)

etc

The three-photon state can then be regrouped in terms of Bell
states of photons (A and B) and single-photon states of C:

| Ψ >=
1

2
[| φ+ > (C1 | 0 > −C2 | 1 >)+ | φ− > (C1 | 0 > +C2 | 1 >)

− | Ψ+ > (C1 | 1 > −C2 | 0 >)− | Ψ− > (C1 | 1 > +C2 | 0 >)] [5]

The probability of finding any of the Bell states of (A,B) on mea-
surement is thus

1
2

2
= 0.25. [2]

The Bell states can be created in the laboratory by e.g. non-
linear crystals. An experimenter can switch from one Bell state
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to another by performing an operation on one of the qubits: phase
shift (change of sign), bit-flip ( e.g. | 0 >→| 1 >), combined phase
shift and bit flip, and the identity operation (do nothing). All
four operations can be performed on polarised photons using wave
plates (polarisers), mirrors or non-linear crystals.

Alice wants to teleport a teleportee photon A in the unknown
quantum state

| T >= C1 | 1 > +C2 | 0 >

where C1 and C2 are probability amplitudes satisfying | C1 | 2+ |
C2 | 2 = 1, to Bob.

A pair of ancillary photons B and C is prepared in e.g the Bell
state Ψ−. Photon B is sent to Alice and photon C to Bob.

Alice performs a joint measurement on her ancillary photon and
the teleportee photon, and obtains one of the Bell states with
probability 1

4
. This measurement collapses Bob’s ancillary pho-

ton C into a well defined state uniquely related to the state of the
teleportee | T >. Alice then transmits the result of her measure-
ment to Bob over a public channel and he then knows which of
the four unitary operations (phase shift, bit flip, combined phase
shift/bit flip, identity operation) to perform on his photon C to
switch its state to that of the original photon | T > . Suppose
Alice, in her Bell state measurement, finds | Ψ− > . C is projected
into the state

C1 | 1 > +C2 | 0 >, which is the same as | T > . Alice then tells Bob
the result of her measurement and Bob knows he has to do noth-
ing (perform the identity operation) on his photon; it is already
an identical copy of the teleportee. Bob’s photon may have been
projected into the state instantaneously, but Bob doesn’t know
he has to do nothing until he receives Alice’s message via a sublu-
minary signal. If Alice had found the state | Ψ+ >, Bob’s photon
would have been projected into the state C1 | 1 > −C2 | 0 > and on
receiving Alice’s message he would have had to have performed a
phase change operation to recover the teleportee. In this process
of teleportation the original photon is destroyed ( by Alice’s Bell
state measurement), but an identical copy created elsewhere. It
is not necessary to know anything about the state of the original
photon. [10]
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9. The Hamiltonian operator H describing a quantum mechanical system in
spherical polar co-ordinates has a lowest energy eigenvalue E0. Show, for
any normalisable function F (r) that satisfies the boundary conditions ap-
propriate to a bound state, that the expectation value E(F ) of H satisfies

E(F ) =

∫
F (r)∗HF (r)dr∫
F (r)∗F (r)dr

≥ E0.

Use the expansion postulate to expand F (r) in the basis formed
by the eigenvectors of H, satisfying

Hψi = Eiψi; < ψi | ψj >= δij :

F =
∑

i

aiψi

The expectation value of H in state F is

< H >=
∫
F ∗HFdτ

Thus
< H >=

∫ ∑
i

a∗iψ
∗
iH

∑
j

ajψjdτ

=
∫ ∑

i,j

a∗i ajψ
∗
iEjψjdτ

=
∑
i,j

a∗i ajEiδij =
∑

i

| ai |2 Ei

Now
< F | F >=

∫
F ∗Fdτ

=
∫ ∑

i,j

a∗i ajψ
∗
iψjdτ

=
∑

i

| ai |2

Let E0 be the lowest eigenvalue of H, i.e. E0 ≤ Ei for all i 6= 0.
Then ∑

| ai |2 Ei ≥
∑

i

| ai |2 E0 = E0

∑
i

| ai |2

Or ∫
F ∗HFdτ ≥ E0

∫
F ∗Fdτ

E0 ≤
∫
F ∗HFdτ∫
F ∗Fdτ

= E(F ) [8]
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(Bookwork down to here; what follows is new.)

H = − h̄2

2m

d2

dx2
+

1

2
mω2x2

∫ ∞

−∞
F ∗Fdx =

∫ ∞

−∞
e−αx2

dx =

√
π

α
= I0

We have

< H >=
∫
F ∗HFdx =

−h̄2

2m
(−α+ α2x2)e−αx2

+
1

2
mω2x2e−αx2

dx

=
h̄2

2m
(αI0 − α2I2 +

1

2
mω2I2

where

I2 =
∫ ∞

−∞
x2e−αx2

dx =

√
π

α

1

2α

which gives

E =
< H >

I0
=

h̄2

4m
α+

mω2

4α

Differentiate wrt α :

dE

dα
=

h̄2

4m
− mω2

4α2
= 0

or

α2 =
m2ω2

h̄2

α = ±mω
h̄

We must choose the positive root so that F tends to zero when
| x | is large and

F = e
−ωmx2

2h̄ . [11]

Excited states: The variational method can be used to find ap-
proximate values of the energies of excited states. For example,
for the first excited state we choose a trial function F1 which is
orthogonal to the ground state function F0. If only the varia-
tional estimate is available for F0 this introduces a further source
of approximation. F1 may be made orthogonal by inspection or
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by using a variational principle with constraints, the method of
Lagrange multipliers.

For higher excited states the trial function is orthogonalised to
the wave functions for all lower states. [3]

For the oscillator, first excited state; F1 must be an odd function
of x and orthogonal to

e
−αx2

2

A suitable choice is

F1 = xe
−αx2

2 [4]

For the second excited state, we need an even function which has
two nodes and is orthogonal to bothF0 and F1. A choice would be

F2(α, β, x) = (βx2 − 1)e
−αx2

2 [4]

13



10. Commutator:

2mh̄ω(a−a+ − a+a−) = (p− imωx)(p+ imωx)− (p+ imωx)(p− imωx)

Expanding the brackets on LHS and cancelling gives

−2imω(xp− px)

but xp− px = ih̄, giving

(a−a+ − a+a−) = 1. [2]

[a+a−, a+] = a+a−a+ − a+a+a−

using the fact that a−a+ − a+a− = 1,

= a+a−a+ − a+(a−a+ − 1) = a+

Similarly

[a+a−, a−] = a+a−a− − a−a+a− = (a−a+ − 1)a− − a−a+a− = −a−. [3]

Eigenvalue problem for N is

N | n >= λn | n >

[a+a−, a+] | n >= [N, a+] | n >= a+ | n >

(Na+ − a+) | n >= a+N | n >= λna+ | n > .

therefore
Na+ | n >= (λn + 1)a+ | n > .

also
(Na− − a−N) | n >= −a− | n >

Na− | n >= a−N | n > −a− | n >= (λn − 1)a− | n >

thus a+ | n > is proportional to | n+ 1 > and a− | n > to | n− 1 > . [3]

Let | 0 > be the state vector of the state with lowest eigenvalue.
Then a− | 0 >= 0 since the state cannot be lowered. Therefore

a+a− | 0 >= N | 0 >= 0

or λ0 = 0. Now apply the step-up operator a+:
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a+ | 0 > is proportional to | 1 > . so that

Na+ | 0 >= 1 a+ | 1 >

N | 1 >= 1 | 1 >
i.e next eigenvalue λ1 = 1. Operating on | 1 > with a+ then gives
in similar fashion, λ2 = 2.. And so on; successive operations with
a+ yield the eigenvalues 0,1,2,3,... [4]

(Bookwork down to here; the rest is new to candidates)

Coherent State.

Let

| α >=
∞∑

n=0

Cn | n > .

Operate on both sides with a− and use the equations

a− | α >= α | α >

and
a− | n >=

√
n | n− 1 >

to obtain

α | α >= α
∞∑

n=0

Cn | n >=
∞∑

n=1

Cn

√
n | n− 1 >

Equating coefficients,

C1 = αC0;
√

2C2 = αc1;
√

3C3 = αC2; · · ·

In general √
nCn = αCn−1.

[6]

therefore, √
n(n− 1)(n− 2) · · · 3.2.1Cn = αnC0.

Hence

| α >= C0

∞∑
n=0

αn

√
n!
| n >

Normalise:

< α | α >= C∗
0C0

∑
m,n

αm+n

√
m!n!

< m | n >= 1.

If C0 is real,

C2
0

∞∑
n=0

α2n

n!
= 1
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or
C2

0e
|α|2 = 1, C0 = e−|α|

2/2

so that

| α >= e−|α|
2/2

∞∑
n=0

αn

√
n!
| n > [6]

probability of finding | k > on measurement is

| Ck |2= e−|α|
2α2k

k!
[3]

The average number of quanta is the expectation value of N in
state α. Or < α | N | α > . This equals

e−|α|
2 ∑

m,n

αm+n

√
m!n!

< m | N | n > .

= e−|α|
2 ∑

n

α2n

n!
n

becauseN | n >= n | n > and < m | n >= δm,n. This equals

= e−|α|
2
∞∑

n=1

α2n

(n− 1)!

= e−|α|
2

α2e+|α|
2

= α2. [3]
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