
So far we only considered macroscopic properties that can be termed as static. We 
shell now look at some properties that are not. Collectively they are termed 
transport phenomena and can be further subdivided in:

•Diffusion – molecular transport due to concentration gradients
•Thermal conduction – transport of energy
•Viscosity – transport of momentum

These are described by their corresponding coefficients: D for diffusion, K for 
thermal conduction and η for viscosity. 

Transport Phenomena
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Mean free path

In order to consider the diffusion we must first look in details at molecular 
collision. We again suppose that all molecules are the same and collide 
elastically and also suppose σ to be an effective molecular diameter. We will 
follow the progress of a single molecule as it collides with others moving 
through the gas. For simplicity we assume that the rest of the molecules are 
frozen in their positions. Thus, if our lonely molecule travels distance l it will 
sweep an element of volume πσ2l and if there are n molecules per m3 then our 
molecule will collide with πσ2ln of them.
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We can now define the mean distance between collisions or mean free 
path as (distance travelled)/(number of collisions):
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We only considered the simplest approach, in reality other molecules will 
move too and if the speed distribution will be describe by that of Maxwell

Mean free path cntd.
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what a change!

We see that λ~1/n~1/P. For air (σ=0.3nm) at STP (standard temperature and 
pressure) λ≈100nm, whilst mean distance between the molecules is of order 
(1/n3) ≈3nm. 
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Consider a volume of gas with concentration n and mean velocity v and lets see 
how many molecules will pass through an area A per unit time. We further split 
our velocity in three components one of which is perpendicular to area A (we 
done this before in kinetic theory). Then in time t about 1/6 of  the molecules in 
the volume vtA will pass through A and hence flux j:

Number of collisions per unit area per second (flux)
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Diffusion

Now if we consider gas with a concentration gradient it should be clear that 
molecules will move from the more concentrated to the less concentrated 
regions via a process of collision/random walk. This is diffusion process. If 
over distance dx concentration change is dn the concentration gradient is 
dn/dx. The number of molecules crossing A normal to gradient per second can 
then be written as:
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Where D is called the coefficient of self-diffusion and the negative sign implies 
flow in the direction of smaller concentration. 

Consider the following situation:
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Diffusion contd.

We would then have the number of molecules per second crossing from 1
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and from 3
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There will also be molecules leaving on each side of 2 of number

So the net transfer is then  

For air at STP σ=0.3nm, λ≈100nm, v=450m/s, n ≈3*1025m-3

which gives D of order 10-2 m2/s

hence D can be related with macroscopic T and also P and 
V through n



Diffusion contd.

The difference from the previous consideration (jin = jout, dn/dt=0) is that now 
n=n(x,t), and dn/dt≠0 so we arrive to another relationship:
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With the solution 
(for L>>D):

N0 is the initial number of molecules, A is the area across which gas expands. 
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Thermal conductivity
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2 where K is the thermal 
conductivity

Now the rate of transport, this time of 
thermal energy, is from 1

dx
dTKAQ −=

⎟
⎠
⎞

⎜
⎝
⎛ + λ

dx
dTTcAvn

V6

⎟
⎠
⎞

⎜
⎝
⎛ − λ

dx
dTTcAvn

V6from 3

x

so the net transfer at 2 is 

VV cvnK
dx
dTcAvnQ

33
λλ =⇒−=hence



Viscosity
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F must be applied to maintain constant flow. F is 
proportional to A and u/h.A
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We further assume: (i) u<<v, (ii) the only molecules 
reaching 2 are those that just made their collision at 
a distance λ. Thus the number of molecules crossing
A is per second and from 3 this molecules 
bring to 2 net horizontal momentum
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But 2 sends           both ways too

Thus the total momentum transfer 
per second (i.e. force) is


