
ASTM003 Angular Momentum and Accretion

Processes in Astrophysics

May 2005 Examination Paper Model Answers

A1 (a) Viscosity can produce angular momentum transport. Other mechanisms include:
the combined effects of magnetic fields and winds; wave transport.

[Lectures] [3 marks, 1 mark each]
(b) The mean free path is L = 1/nσ = 1/(3× 1021 × 10−20) m = 0.03 m

[Unseen] [1 mark]
The kinematic viscosity is ν ' Lcs, where cs is the sound speed.
For a temperature T = 5× 104 K and gas composed of hydrogen (µ = 1 if ionised),

cs =

√

8.3× 5× 104
0.001

m s−1 '
√
42× 107 ms−1

'
√
4× 108 ms−1 ' 2× 104 ms−1

(note the conversion to moles involves a factor of 1000). The kinematic viscosity is
ν ' 0.03× 2× 104 m2 s−1 ' 600 m2 s−1. [Lectures] [3 marks]
The evolutionary timescale is

τev '
R2

disc

3ν
' (1012)2

3× 600 s ' 1× 10
21 s [3 marks]

Dwarf novae have outburst timescales ' days. This is much smaller than the evo-
lutionary timescale if atomic/molecular interactions alone are responsible for the
viscosity. [Application of principles from lectures] [2 marks]

(c) The ‘alpha’ model of viscosity represents the kinematic viscosity as ν = αcsH where
α is a parameter and H is the half thickness of the accretion disc. This accounts for
the viscosity being larger than that contributed by atomic scale processes, particu-
larly the effects of turbulence. [Lectures] [3 marks]

A2 (a) Consider a cylindrical element of gas in the accretion disc of veritcal length dz and
cross-sectional area A. The pressure force on the element in the z-direction is −A dP
where dP is the difference in pressure P across the element.
The gravitational force on the element is GMdm/r2 where dm is the mass of the
element and r is the distance to the star, with r2 = R2 + z2.
The component of the gravitational force in the z direction is

− GM

r2
dm

z

r
= − GM

r2
(ρAdz)

z

r
= − GM

r3
ρA z dz ,

where ρ is the density of the gas at the point. For equilibrium,

−A dP − GM

r3
ρA z dz = 0 ,

1



which gives the differential equation

1

ρ

dP

dz
= − GM

(R2 + z2)3/2
z ,

the required result. [Lectures] [7 marks]

For Keplerian rotation, Ω2(R) =
GM

R3
. For a thin disc, R2 + z2 ' R2. So the

differential equation becomes,

1

ρ

dP

dz
= − GM

R3
z = −Ω2z .

For an ideal gas, P = RρT/µ. Since the gas is isothermal, T = constant throughout.
Therefore,

dP

dz
=
RT

µ

dρ

dz
.

The differential equation becomes,

1

ρ

RT

µ

dρ

dz
= −Ω2z .

Integrating over z at a particular R from a the central plane to a height z,

RT

µ

∫ ρ(z)

ρ0

dρ′

ρ′
= − Ω2

∫ z

0

z′ dz′ ,

where ρ0 is the central density in the disc. This gives

RT

µ
ln

(

ρ

ρ0

)

= − Ω
2z2

2
∴ ρ(z) = ρ0 exp

(

− Ω
2µz2

2RT

)

.

This is of the form ρ(z) = ρ0 exp (− z2/2H2) , where H =
√

RT/µΩ2 is a constant
at a particular radius R. [Lectures] [7 marks]

(b) The surface mass density is Σ =
∫∞

−∞
ρ(z) dz . Therefore,

Σ =

∫ ∞

−∞

ρ0 exp

(

− z2

2H2

)

dz = ρ0
√
2 H

∫ ∞

−∞

exp

(

− z2

2H2

)

d

(

z√
2 H

)

= ρ0
√
2H

∫ ∞

−∞

e−x
2

dx = ρ0
√
2π H

using the standard integral. [Lectures] [4 marks]
(c)

cs =

√

RT

µ
and H =

√

RT

µΩ2
. ∴ H =

cs
Ω

.

So, cs = ΩH. [Lectures] [2 marks]
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A3 (a) A dust particle of mass mgr at a distance z from the central plane of the disc

experiences a gravitational force F =
GMmgr

r2
, where M is the mass of the central

star, r is the distance from the star, and G is the gravitational constant. If R is the
radial distance in the plane of the disc, r2 = R2 + z2. The component of the force

in the direction perpendicular to the disc is
GMmgr

r2
z

r
downwards. The equation of

motion is

mgr
dv

dt
= πa2ρ csv −

GMmgr

r2
z

r
= πa2ρ csv − Ω2z mgr ,

on substituting Ω =
√

GM/R3 for Keplerian rotation.
The density of the material of the grain is ρgr = mgr/

4
3
πa3 for a spherical grain. So

dv

dt
=

πa2ρ csv
4
3
πρgra3

− Ω2z = 3ρ cs
4ρgra

v − Ω2z ,

the required result. [Lectures] [8 marks]
(b) If the dust grain has reached terminal velocity, dv/dt = 0. If this happens quickly,

z ' H still. So the equation in part (a) becomes,

0 ' 3ρcs
4ρgra

vt − Ω2H . ∴ vt '
4aρgrΩ

2H

3ρ cs

[Lectures, 2 marks]
For a protoplanetary disc we have the standard result cs ' HΩ, and ρ ' Σ/2H .

∴ vt ∼
4aρgr Ω

2H

3
(

Σ
2H

)

(HΩ)
=
8aρgr ΩH

3Σ
[Lectures, 3 marks]

The settling time τs will be τs '
H

vt
∼ 3Σ

8aρgr ΩH
.

B1 (a) The constribution to the gravitational potential at a point (x, y, 0) in the rotating
frame due to the inverse square law is

Φgrav(x, y) = −
Gm2

√

(x− x2)2 + y2
− Gm1

√

(x− x1)2 + y2

The centrifugal effects can be represented as a centrifugal potential Φcent in addition
to the Φgrav contribution, with Φ = Φgrav + Φcent.
The centrifugal acceleration is Ω2r, where r is the distance from the origin (about
which the frame is rotating). So r =

√

x2 + y2. This implies −∇Φcent = Ω
2r. This

requires Φcent(x, y) = −12 Ω2 r2 = −12 Ω2 (x2 + y2)
The total potential in the rotating frame is therefore

Φ(x, y) = − Gm2
√

(x− x2)2 + y2
− Gm1

√

(x− x1)2 + y2
− 1

2
(x2 + y2) Ω2 ,
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the required result. [Lectures] [7 marks]
The appearance of the potential in the (x, y) plane is:

[Lectures, with some additional interpretation for unequal masses] [3 marks]
(b) On the x-axis (i.e. y = z = 0) we have

Φ(x, y) = − Gm2

|x− x2|
− Gm1

|x− x1|
− 1

2
x2Ω2 ,

Between the two stars we have |x− x2| = x− x2 and |x1 − x| = x1 − x.

∴ Φ(x) = − Gm2

x− x2
− Gm1

x1 − x
− 1

2
x2Ω2 .

Differentiating with respect to x,

dΦ

dx
=

Gm2

(x− x2)2
− Gm1

(x1 − x)2
− xΩ2 .

At the stationary point (i.e. the L1 point), dΦ/dx = 0. So at this point,

Gm2

(x− x2)2
− Gm1

(x1 − x)2
− xΩ2 = 0 .

But for orbital motion we have Ω2 = G(m1 + m2)/D
3, where D is the distance

between the stars.

∴

m2

(x− x2)2
− m1

(x1 − x)2
− x

m1 +m2

D3
= 0 .

Put x = x2 + rL for this point.

∴

m2

(x2 + rL − x2)2
− m1

(x1 − x2 − rL)2
− (x2 + rL)

m1 +m2

D3
= 0 .

But x1 − x2 = |x1| + |x2| = D, the separation between the stars, and x2 =
−m1D/(m1 +m2).

∴

m2

r2L
− m1

(D − rL)2
−
(

− m1

m1 +m2

D + rL

)

m1 +m2

D3
= 0 ,
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which on rearranging gives,

− m1

m2

D3r2L + D3(D − rL)
2 −

(

m1

m2

+ 1

)

r3L(D − rL)
2 +

m1

m2

D r2L(D − rL)
2 = 0 ,

the required result. [Seen in example problem] [10 marks]
No simple analytic expression can be found for rL in terms of m1, m2 and D.

[Unseen] [2 marks]
(c) No account is taken for the Coriolis force in this potential, The Coriolis force depends

on the velocity of the gas in the rotating frame, which cannot be represented in this
potential. [Unseen] [3 marks]

(d) Roche lobe overflow can occur if:
• one star expands to fill its Roche lobe, due to stellar evolution;
• the orbital separation D decreases due to the loss of angular momentum, for
example caused by stellar winds, by tidal effects, or by gravitational radiation.

[Lectures] [3 marks]
(e) In detached binary systems, neither component fills its Roche lobe.

In semi-detached binary systems, one component fills its Roche lobe, the other does
not.
In contact binary systems, both components fill their Roche lobes and exist within
a common envelope.

[Lectures] [3 marks]
(f) Consider mass transfer from a lobe-filling star of mass m1 into a ring of radius Rring

about a star of mass m2. Let the distance between the L1 point and component m2

be rL.
The angular velocity of material at the L1 point about m2 is Ω. Therefore the
specific angular momentum of gas at L1 relative to m2 is j = r2LΩ. The gas that
crosses the L1 point goes into a circular orbit of radius Rring. Its specifc angular
momentum in this orbit is j =

√

Gm2Rring . From the principle of conservation of
angular momentum,

√

Gm2Rring = r2LΩ ∴ Rring =
r4LΩ

2

Gm2

.

But Ω2 =
G(m1 +m2)

D
∴ Rring =

(m1 +m2)

m2

r4L
D3

.

[Lectures] [7 marks]
When the masses are equal,

Rring = 2
r4L
D3

= 2
(1
2
D)4

D3
=

D

8
.

[Lectures] [3 marks]
(g) If the lobe-filling star is a main sequence star, the other star must be compact (a

white dwarf, neutron star or black hole) for an accretion disc to be formed. Other-
wise the accretion flow would reach the surface of the star directly. [Lectures]
[2 marks]
A cataclysmic variable normally consists of a low mass main sequence star and a
white dwarf. [Lectures] [2 marks]
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(h)

[Lectures] [5 marks]

B2 (a) The gravitational potential energy of a mass m of material at a radial distance R
from a neutron star of mass M is −GMm/R. Therefore the energy released when
material of mass m is brought from infinity to a radius R is GMm/R.

∴

energy released

mc2
=

GM

Rc2
=
6.7× 10−11 × 2× 1030
104 × (3× 108)2 ' 0.15 .

So the gravitational potential energy is 10–20% of the E = mc2 rest mass energy.
This is larger [by more than an order of magnitude] than the energy available from
even the complete fusion of H to Fe. [Lectures] [4 marks]

(b) The Eddington limit is imposed by the radiation pressure on the accreting material.
If the accretion rate occurs at the Eddington limit, the rate of energy release creates
a sufficient radiation flux that the radiation pressure inhibits further accretion.

[Lectures] [4 marks]
(c) Consider material at a radial distance r from the central object. The radiation

pressure Prad will produce an outwards force that acts against gravity. When the
radiation pressure force is equal to the gravitational force,

− GM

r2
− 1

ρ

dPrad

dr
= 0 ∴

dPrad

dr
= − GMρ

r2
. [Lectures] [4 marks]

The luminosity of the central object is L = 4πr2F , where F is the radiative flux
(defined as the enegry per unit time per unit surface area).

But F = − 4ac
3κρ

T 3
dT

dr
∴ L = − 16πac

3κρ
r2 T 3

dT

dr
.

But Prad =
aT 4

3
∴

dPrad

dr
=

a

3

d

dr

(

T 4
)

=
4a

3
T 3
dT

dr

So L = − 4πc
κρ

r2
dPrad

dr
on substituting for T 3

dT

dr
.

[Lectures] [6 marks]
But the luminosity resulting from a mass accretion rate ṁ on to a compact object
of mass M and radius Rc is

L =
GMṁ

Rc
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[Lectures] [4 marks]

∴

GMṁ

Rc

= − 4πc
κρ

r2
dPrad

dr

Substituting for
dPrad

dr
= −GMρ

r2
,

GMṁ

Rc

= − 4πc
κρ

r2
(

−GMρ

r2

)

=
4πc

κ
GM

∴ ṁ =
4πcRc

κ

This is the Eddington limited accretion rate ṁEdd. So, ṁEdd =
4πcRc

κ
, the required

result. [Lectures] [5 marks]

If Rc = 5RS =
10GM

c2
, ṁEdd =

40πGM

cκ
, [Lectures] [3 marks]

(d) κ = 0.04 m2 kg−1 and M = 108M¯ .

∴ ṁEdd =
40πGM

cκ
' 40× 3× 6.7× 10−11 × 108

3× 108 × 0.04 M¯ s
−1

' 7× 10−8 M¯ s
−1 ' 7× 10−8 × 3.2× 107 M¯ yr

−1 ' 2M¯ yr
−1

[Application of principles discussed in lectures] [4 marks]

(e) ṁ ' 2M¯ yr
−1, M = 108 M¯, R ∼ 107 m.
∴ Teff ' 1.2× 107 (2) 1

4 (108)
1

4

(

1012

107

)− 3

4

' 3× 105 K

[Principles discussed in lectures] [4 marks]
(f) This corresponds to soft X-rays. The radiation from the inner regions of AGNs

includes a strong hard X-ray component, indicative of higher temperatures than
predicted here. [Lectures] [2 marks]
This discrepancy can be explained by a hot corona of low density around the main
disc. The corona is so hot that it emits the hard X-rays that are observed.

[Lectures] [2 marks]
(g) The temperatures of accretion discs around stellar mass black holes are actually

higher than predicted here for the AGNs. They emit hard X-rays.
[Lectures] [2 marks]

(h) The rate of accretion is determined by the rate of gas supply and by the viscosity
of the disc. [Viscosity discussed in lectures, gas supply unseen] [2 marks]

(i) Sketch of spectrum:

[Lectures] [4 marks]
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B3 (a) Neglecting the pressure contribution,

dvi
dt

=
1

ρ

∂σij
∂xj

where σij = η

(

∂vi
∂xj

+
∂vj
∂xi
− 2
3
∇.v δij

)

.

Consider the dot product v ·dv/dt to calculate the kinetic energy. The dot product
is

vi
dvi
dt

=
d

dt

(1

2
v2i

)

=
1

ρ
vi

∂σij
∂xj

on substituting for dvi/dt. [Lectures] [4 marks]
The kinetic energy per unit volume is EV =

1
2
ρ vi vi. So,

dEV

dt
= ρvi

dvi
dt

(for ρ independent of time)

= vi
∂σij
∂xj

=
∂

∂xj
(viσij) − σij

∂vi
∂xj

using the product rule. [Lectures] [4 marks]
The ∂(viσij)/∂xj term expresses the rate of kinetic energy transfer. The σij ∂vi/∂xj
term is the rate of energy dissipation due to viscosity per unit volume.

[Lectures] [4 marks]
This energy dissipation term is

σij
∂vi
∂xj

=
1

2

(

σij
∂vi
∂xj

+ σij
∂vi
∂xj

)

=
1

2

(

σij
∂vi
∂xj

+ σji
∂vj
∂xi

)

from the symmetry of σij

=
1

2

(

σij
∂vi
∂xj

+ σij
∂vj
∂xi

)

from σij = η

(

∂vi
∂xj

+
∂vj
∂xi
− 2
3
∇.v δij

)

=
1

2
σij

(

∂vi
∂xj

+
∂vj
∂xi

)

=
1

2
η

(

∂vi
∂xj

+
∂vj
∂xi
− 2
3
∇.v δij

) (

∂vi
∂xj

+
∂vj
∂xi

)

on subs. for σij

=
1

2
η

(

∂vi
∂xj

+
∂vj
∂xi

) (

∂vi
∂xj

+
∂vj
∂xi

)

using ∇.v = 0

= 2 ρ η

[

1

2

(

∂vi
∂xj

+
∂vj
∂xi

)] [

1

2

(

∂vi
∂xj

+
∂vj
∂xi

)]

on substituting for η = ρν from the definition of the kinematic viscosity ν.
[Lectures] [10 marks]

∴ σij
∂vi
∂xj

= 2 ρ η eij eij where eij ≡
1

2

(

∂vi
∂xj

+
∂vj
∂xi

)

.
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So the rate of energy dissipation per unit volume is ε = 2 ρ η eij eij .
[Lectures] [3 marks]

(b) The dissipation per unit area can calculated by integrating perpendicular to the
accretion disc.

εD =

∫

2 ρ ν eij eij dz .

Substituting for eij eij = R 2 (dΩ/dR)2,

εD =

∫

2 ρ ν
R 2

2

(

dΩ

dR

)2

dz = ν R 2

(

dΩ

dR

)2 ∫

ρ dz = R 2 ν Σ

(

dΩ

dR

)2

the required result. [Lectures] [5 marks]

(c) In a Keplerian disc,
dΩ

dR
= − 3

2

Ω

R
. ∴ εD = R2 ν Σ

(

− 3
2

Ω

R

)2

=
9

4
Ω2 ν Σ .

[Lectures] [4 marks]

(d) Substituting ν Σ =
ṁ

3π

[

1−
(

R∗
R

)
1

2

]

into the expression for εD,

εD =
9

4
Ω2

ṁ

3π

[

1−
(

R∗
R

)
1

2

]

=
3

4π
ṁ

[

1−
(

R∗
R

)
1

2

]

Ω2

=
3

4π
ṁ

[

1−
(

R∗
R

)
1

2

]

GM

R3
. [Lectures] [3 marks]

The energy emitted per unit time per unit area of disc is 2σT 4eff on assuming all the
dissipated energy is radiated as electromagnetic radiation (the factor 2 accounts for
the two sides of the disc). So, εD = 2σ T 4eff [Lectures] [4 marks]

∴ T 4
eff =

3GMṁ

8πσR3

(

1−
(

R∗
R

)
1

2

)

.

∴ Teff =

[

3GMṁ

8πσR3

(

1−
(

R∗
R

)
1

2

)]
1

4

.

[Lectures] [3 marks]

(d) H = cS/Ω =

√

RT

µ

√

R3

GM
on substituing for cs and Ω. [Lectures] [1 mark]

∴ H =

√

RR3

GMµ

√
T =

√

RR3

GMµ

[

3GMṁ

8πσR3

(

1−
(

R∗
R

)
1

2

)]
1

8

on using Teff from part (d) for T . Using the approximation R∗/R ' 0 for RÀ R∗,

H '
[

3R4R 9 ṁ

8π G3M3 σ µ4

]
1

8

. [Unseen] [2 marks]
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Putting in numerical values,

H '
[

3× 8.34 × (1.5× 10−11) 9 × 6× 1014
8π × (6.7× 10−11)3 × (2× 1030)3 × 5.7× 10−8 × (0.001)4

]
1

8

m

∼ [ 2× 1076 ]
1

8 m ∼ 3× 109 m [Unseen] [2 marks]

The aspect ratio at a distance R = 1 AU = 1.5× 1011 m is therefore

H

R
∼ 3× 109
1.5× 1011 ∼ 0.02

[Accept any answer in range 0.001− 0.1] [Unseen] [1 mark]
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