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SECTION A

Each question carries 20 marks. You should attempt ALL questions.

1. (a) A spacecraft exploring a planet of normal mass m and radius r moves around the
planet along a circular orbit of radius R = 6r. Ignoring the transverse Doppler
effect, evaluate the redshift z of the radio signal emitted by a probe left on the
surface of the planet and received by the spacecraft.

(b) Another spacecraft moves very far from any gravitating bodies with acceleration
a. The redshift of a photon emitted at the bottom of the rocket and detected at
its top is z

′ ≈ 10−14. Evaluate the acceleration a if the height of the rocket is
100 m. [Hint: First calculate the gravitational redshift when R− r ¿ r and then
apply the equivalence principle.]

A1. Solution

A1(a)

•[5 Marks](seen similar)

From conservation of energy, neglecting the transverse Doppler effect, we have

hνob − Gm

R

hνob

c2
= hνem − Gm

r

hνem

c2
.

•[3 Marks] (seen similar)

Thus
νob

νem

=
1− Gm

rc2

1− Gm
Rc2

.

•[5 Marks] (unseen)

Taking into account that in Newtonian limit Gm/rc2 ¿ 1, we have

νob

νem

≈ 1− Gm

rc2

(
1− r

R

)
= 1− 5Gm

6rc2
,

then

z =
νem − νob

νem

= 1− νob

νem

=
GM

rc2
(1− r

R
) =

5Gm

6rc2
.

A1(b)

•[4 Marks] (seen similar)

If R = r + h and h ¿ r

z =
GM

rc2
(1− r

r + h
) ≈ GM

rc2
(1− (1− h

r
)) =

GMh

r2c2
=

gh

c2
,

where g is free fall acceleration at the surface of gravitating body.

•[3 Marks] (seen similar)
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According to the equivalence principle

z
′
=

ah

c2
,

then

a =
z
′
c2

h
=

10−14 · (3 · 108)2m2s−2

100m
= 9m · s−2.

2. (a) A star forms a black hole of mass M . Show that at the moment when the radius
of the star is equal to 103rg its average density is

ρ ≈ 2× 1010 kg m−3

(
M

M¯

)−2

.

(b) Using simple Newtonian estimates, show that to an order of magnitude the radius
of tidal disruption for a star of mass m and radius r in the gravitational field of
a black hole of mass M is

RTD ≈ r
(

M

m

)1/3

.

Compare this radius with the gravitational radius and find the black hole mass
for which RTD = 103rg. Give the answer in solar masses.

A2. Solution

A2(a)

•[8 Marks] (seen similar)

To an order of magnitude

ρ =
M

V
=

M
4π
3

109r3
g

=
3M · 10−9

4π
(

2GM
c2

)3 =
3M¯ · 10−9

4π
(

2GM¯
c2

)3

(
M

M¯

)−2

=
3

4π

M¯ · 10−9

(3 km)3

(
M

M¯

)−2

=

3 · 2× 1021 kg

4 · 3.14 · 33 × 1015 cm3

(
M

M¯

)−2

=
109

10 · 2 · 3g·cm−3

(
M

M¯

)−2

≈ 2×107g·cm−3

(
M

M¯

)−2

.

A2(b)

•[6 Marks] (seen similar)

To an order of magnitude gravitational force experienced by a particle of mass
δm on the surface of the star from the star itself is Fs ≈ Gmδm/r2, while the
tidal force producing a relative acceleration between the the same particle and the
centre of the star to an order of magnitude is FTD ≈ GMδmr/R3, hence defining
the tidal radius as the radius at which Fg ≈ FTD, we have

Gmδm

r2
≈ GMδmr

R3
TD

,

and finally, RTD ≈ r(M/m)1/3.
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•[6 Marks] (seen similar)

From equality

RTD = r¯

(
M

M¯

)1/3

= 103rg = 103 2GM

c2
= 3 km · 103 M

M¯
,

we have

M

M¯
≈

(
r¯

3 km · 103

)3/2

= (
7 · 105 km

3 · 103 km
)2/3 = (2.3× 102)3/3 ≈ 3.5× 103,

so M ≈ 3.5× 103M¯.

3. (a) An observer moves along a circular orbit of radius r in the equatorial plane (θ =
π/2) of a rotating black hole. If the gravitational field is described by the Kerr
metric, show that this metric can be written in the form

ds2 =

(
g00 − g2

03

g33

)
c2dt2 + g33 (dφ− Ωdt)2 ,

where
Ω = −g03

g33

=
rga

(r2 + a2)r + rga2
.

Use the Equivalence Principle to show that the corresponding non-inertial refer-
ence frame rotates with angular velocity Ω.

(b) Find the values of r corresponding to the limit of stationarity (g00 = 0) and the
event horizon (g11 = ∞).

A3. Solution

A3(a)

•[6 Marks](unseen )

For dr = 0 and dθ = π/2

ds2 = g00c
2dt2+2g03cdtdφ+g33dφ2 = g00c

2dt2+g33

(
dφ2 +

2g03cdtdφ

g33

+
g2
03

g2
33

)2

−g2
03

g33

c2dt2 =

=

(
g00 − g2

03

g33

)
c2dt2 + g33

(
dφ +

g03

g33

cdt

)2

= g̃00c
2dt2 + g33 (dφ− Ωdt)2 ,

where
Ω = −g03

g33

=
rga

(r2 + a2)r + rga2
.

•[5 Marks](unseen )

The following transformation of coordinates

d̃t =

√√√√
(
g00 − g2

03

g33

)
dt,
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and
d̃φ =

√
g33r

−2(dφ− Ωdt),

brings the metric to the form

ds2 = c2dt̃2 − r2dφ̃2,

which is locally galilean metric. Hence locally the observer can not discriminate
between the Kerr gravitational field and non-inertial frame of reference rotating
with angular velocity Ω.

A3(b)

•[4.5 Marks](seen similar)

The limit of stationarity: from g00 = 0 we have ρ2 = rgr or

r2 − rrg + a2 cos2 θ = 0.

The larger solution of this equation is

r =
rg

2
+

√(
rg

2

)2

− a2 cos2 θ.

•[4.5 Marks](seen similar)

The horizon: from g11 = ∞ we have ∆ = 0, thus

r2 − rrg + a2 = 0.

The larger solution of this equation is

r =
rg

2
+

√(
rg

2

)2

− a2.
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SECTION B

Each question carries 40 marks. Only marks for the best ONE question will be
counted.

1. (a) Consider the motion of a particle in the gravitational field of a Schwarzschild
black hole. Using the Hamilton-Jacobi equation, show that

E
(
1− rg

r

)−1 dr

dt
= c

√
E2 − U2

eff ,

where Ueff is the “effective potential energy”:

Ueff (r) = mc2

√√√√
(
1− rg

r

) (
1 +

L2

m2c2r2

)
.

Here L is the angular momentum and m is the mass of a particle.

(b) Explain how Ueff can be used to find stable and unstable circular orbits.

(c) Show that the radius of the stable circular orbit with angular momentum L is

r =
L2

m2c2rg


1 +

√
1− 3m2c2r2

g

L2


 .

Evaluate the radius of the innermost stable circular orbit.

B1. Solution

B1(a)

•[4 Marks](book work)

Taking θ = π/2 we can write down the Hamilton-Jacobi equation in the Schwarzschild
metric as

(
1− rg

r

)−1
(

∂S

c∂t

)2

−
(
1− rg

r

) (
∂S

∂r

)2

− 1

r2

(
∂S

∂φ

)2

−m2c2 = 0.

•[3 Marks](book work)

Then putting S = −Et + Lφ + Sr(r), we have for the radial component of the
four-momentum

•[4 Marks](book work)

∂S

∂r
= p1 = g11p

1 = g11
dr

ds
=

√√√√E2

c2

(
1− rg

r

)−2

−
(
m2c2 +

L2

r2

) (
1− rg

r

)−1

=
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=
1

c

(
1− rg

r

)−1

√√√√E2 −
[
mc2

(
1 +

L2

m2c2r2

) (
1− rg

r

)]2

.

•[2 Marks](book work)

On other hand
dt

ds
= p0 = g00p0 = g00

(
∂S

∂t

)
= −g00E.

•[6 Marks](book work)

Thus

dr

dt
=

dr
ds
dt
ds

=
1

c

(
1− rg

r

) √
E2 − U2

eff

1

E
=

1

c

(
1− rg

r

)−1 √
E2 − U2

eff ,

where

Ueff = mc2

√√√√
(

1 +
L2

m2c2r2

) (
1− rg

r

)
,

hence

E
(
1− rg

r

)−1 dr

dt
= c

√
E2 − U2

eff .

B1(b)

•[3 Marks](book work)

For given radius Ueff is equal to the energy of a particle which has the turn
point for this r, i.e. dr/dt = 0, thus the condition E > Ueff determines the
admissible range of the motion. The effective potential includes in relativistic
manner potential energy plus kinetic energy of non-radial motion, this kinetic
energy is determined by angular momentum L.

•[3 Marks](book work)

All circular orbits are determined by simultaneous solution of the equations

Ueff = E and
dUeff

dr
= 0.

B1(c)

•[2 Marks](seen similar)

From dUeff/dr = 0 we have dU2
eff/du = 0, where u = 1/r.

•[4 Marks](book work)

Hence

−rg

(
1 +

L2u2

m2c2

)
+ (1− rgu)

2L2u

m2c2
= 0, or rgr

2 + 3rg

(
L

mc

)2

− 2
(

L

mc

)2

r = 0.

•[3 Marks](seen similar)
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Solving this equation we have

r± =
L2

m2c2rg

±
√√√√

(
L2

m2c2rg

)2

− 3L2

m2c2
=

L2

m2c2rg


1±

√
1− 3r2

gm
2c2

L2


 .

•[1 Mark](seen similar)

The larger root corresponds to the stable orbit.

•[2 Marks](seen similar)

One can see that

1− 3r2
gm

2c2

L2
> 0.

•[3 Marks](seen similar)

Hence
−
√

3mcrg ≤ L ≤
√

3mcrg.

Substituting L =
√

3mcrg into equation for the radius of circular orbits, we have
for the radius of the innermost stable orbit rlso = 3rg.
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2. (a) Following the original Newtonian calculation of Laplace, show that the escape
velocity from the surface of a gravitating body is equal to the speed of light if
the radius of the body is equal to its gravitational radius. Discuss briefly the
difference between a black hole in Newtonian theory and in General Relativity.
Explain why the surface r = rg is called the event horizon. Show that this surface
is null.

(b) A supermassive black hole of mass Mbh is surrounded by a stellar cluster. Us-
ing the result of question 2(b) from Section A, find the black hole mass, Mcrit,
such that for Mbh < Mcrit the tidal disruption takes place outside the black hole
horizon. Express the answer in terms of the stellar parameters m∗, r∗ and rg∗.
Estimate Mcrit if the cluster consists of solar type stars with m∗ = M¯ and
r∗ = R¯.

(c) Assume that the luminosity of AGNs and QSOs is generated by be the accretion of
gas onto a supermassive black hole, where the gas comes from the tidal disruption
of stars. If the luminosity is proportional to the volume V between the event
horizon and the sphere of radius RTD, evaluate L as a function of black hole mass
and show that the maximum of L is attained at Mbh = 1√

3
Mcrit.

B2. Solution

B2(a)

•[4 Marks](book work)

The escape velocity is determined from

E =
Mv2

2
− GM2

R
= 0.

Then, if v = c,

R =
GM2

Mv2/2
=

2GM

c2
= rg.

•[4 Marks](book work)

In the case of ”Laplacian black hole” a body with the velocity less than velocity of
light, first, moves outward and only after some time starts to move inward, while
in the case of black hole in General Relativity motions outward are impossible,
because the surface r = rg is the event horizon and null surface.
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•[4 Marks](book work)

The surface r = rg is called the event horizon, because nothing, even light signals,
can escape to infinity from this surface. For this reason all events within the
horizon can not be observed from outside.

•[4 Marks](book work)

For r = rg, dr = dθ = dφ = 0, hence ds2 = g00(cdt)2 = (1 − rg/r)c
2dt2 = 0.

Thus, the world-line of every point on this surface is a null world-line, hence, this
surface is null surface.

B2(b)

•[8 Marks](seen similar)

From RTD > rg, where rg is the gravitational radius of the black hole we obtain

r∗(
Mbh

m∗
)1/3 >

2GMbh

c2
,

or
Mbh < (r∗m−1/3

∗ c2/2G)3/2,

so
Mcrit = c3(2G)−3/2r3/2

∗ m−1/2
∗ = m∗(r∗/rg∗)3/2.

•[4 Marks](seen similar)

For solar type stars we have

Mcrit = M¯(7 · 105km/3km)3/2 = 108M¯.

B2(c)

•[7 Marks](unseen )

According to the assumption

L = kV =
4πk

3
(R3

TD − r3
g) =

4πk

3
(r3
∗[

Mbh

m∗
)− (

2GMbh

c2
)3]

=
4πk

3
r3
∗(

Mbh

m∗
)[1− (

Mbh

Mcrit

)2]

∼ Mbh[1− (
Mbh

Mcrit

)2].

•[5 Marks](book work)

If x = Mbh/Mcrit, then
L ∼ x(1− x2)

and
L
′
x = 1− 3x2 = 0

gives x = 1/
√

3.
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3. (a) A binary system consists of an invisible compact object of mass Mx and a visible
star of mass M . The period of the orbit is T , the angle between the normal to
the plane of the orbit and the line of sight of the observer is i and the projection
of the orbital velocity of the visible star on the line of sight is v. Which variables
are measured directly and how? If the visible star is periodically eclipsed by the
invisible object, what can you say about the orientation of the binary system?

(b) Using Newtonian theory, show that the mass function

f ≡ (Mx sin i)3

(Mx + M)2
=

v3T

2πG
.

(c) Observations of three eclipsing binaries give the following velocities and periods:

Binary number 1 2 3
Velocity in km/s 250 500 1000
Period in min 48 64 128

Assume that the invisible compact object is a black hole if its mass exceeds 3M¯
and that all visible stars in the above binaries have masses between 1M¯ and
10M¯. By evaluating the mass function f in each case, determine which of these
binaries contains, may contain or does not contain a black hole.

B3. Solution

B3(a)

•[2 Marks](book work)

The observable values are T and v.

•[2 Marks](book work)

The period T is measured by clocks, the velocity v is obtained from spectroscopic
measurements based on Doppler effect.

•[3 Marks](unseen)

In the case we can say, that the line of sight is very close to the orbital plane,
which means that sin i ≈ 1.

B3(b)

•[4 Marks](book work)

We need solve the following system if equations:

rM = rxMx,

ω2rx = GM(rx + r)−2,

ω2r = GMx(rx + r)−2,

v = ωr sin i.

•[8 Marks](book work)
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Summing the second with the third, we have

ω2(rx + r) = G(M + Mx)(rx + r)−2,

and

rx + r =

[
G(M + Mx)

ω2

]1/3

,

rx = r
M

Mx

,

r(1 +
M

Mx

) =

[
G(M + Mx)

ω2

]1/3

,

v = ωr sin i = ω sin i
Mx

M + Mx

[
G(M + Mx)

ω2

]1/3

,

= (Gω)1/3 sin i
Mx

(M + Mx)2/3
,

v3

Gω
=

v3T

2πG
=

M3
x sin3 i

(Mx + M)2
.

B1(c)

•[8 Marks](unseen)

For all these objects sin i ≈ 1. Introducing mx = Mx/M¯,m = M/M¯, and

f =
v3T

2πGM¯
,

we have

f =

(
v

103km/s

)3 (
T

103s

)
.

For mx = 3 and m = 1
m3

x

(mx + m)2
=

27

16
≈ 1.7,

For mx = 3 and m = 5
m3

x

(mx + m)2
=

27

169
≈ 0.16.

•[5 Marks](seen similar)

If f < 0.16 there is no black hole (-),

If 0.16 < f < 1.7 there may be a black hole (?),

If 1.7 < f there is a black hole (+).

•[5 Marks](unseen)

Object 1: f ≈ 0.253 · 2.88 ≈ 0.045, (-).

Object 2: f ≈ 0.53 · 3.84 ≈ 0.48, (?).
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Object 3: f ≈ 13 · 7.68 ≈ 7.68, (+).

•[3 Marks](unseen)

Thus, the final answer is:

the object N 3 contains a black hole, the object N 2 might contain a black hole,
and the objects N 1 does not contain a black hole.
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