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1. Basic Thermodynamics : Zeroth
and First Laws

Overview - Thermal Properties of Matter

• Temperature

• Heat

• Energy

• etc.

In this course we will be mainly concerned with the gas phase. How do we analyse
properties of macroscopic systems? Huge number of particles - Avogadro’s number
NA ≈ 6× 1023 particles/mol.

It is impossible to get a full microscopic description of the system, we can only
measure macroscopic properties ( e.g: P , V , T ....) Historically there are two
approaches:

1. Thermodynamics : Laws relating these observable macroscopic properties.
Justified by empirical success. (Carnot, Clausius, Kelvin, Joule, etc. ca. 19Th

C.) For systems in equilibrium we can define obvious macroscopic properties (e.g:
P , V , T ...) and find empirical laws relating them:

• Temperature equalisation : When hot and cold bodies are placed in thermal
contact.

• Water at standard temperature and pressure always boils at 100 ◦C.
• Pressure exerted by a dilute gas on a containing wall is given by the ideal

gas laws ( PV = nRT etc.)

2. Statistical Mechanics : Start from atomic and molecular properties and and
deduce the laws for macroscopic systems by statistical averaging.

The division is now largely historical and instead we refer to “Statistical Thermody-
namics.”

1.1. Zeroth Law - Temperature and Equilibrium

Concept of T is intuitive, based on the concept of “hot” or “cold.” T tends to
equalise by the flow of energy.
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Zeroth Law

Temperature is defined as a macroscopic property. If two bodies are separately in
thermal equilibrium with a third body, then they are in equilibrium with each other.
(See Thermal Physics course.)

Temperature Scale

A temperature scale is is scale between 2 points, with a number of “degrees” sep-
arating them. Temperature scales are thus arbitrary (the Second Law removes this.)
Absolute temperature uses absolute zero and one fixed point (the triple point of water;
237.16 K.)

Equilibrium State

Consider an isolated system, and assume it is not in equilibrium, and therefore
contains density, P and T variations etc.
The system will change with time and after a “relaxation time” will reach equilibrium
(where all the gradients will have disappeared.) After this the system undergoes no
observable macroscopic changes.

1.2. The Equation of State and Functions of State

In thermodynamics in general we only consider systems in the equilibrium state.
(Just called a “state”, hereafter.) - Determined by a few macroscopic parameters.
E.g: for a homogeneous fluid: m, V , P .
These variables determine all the other macroscopic properties, which are functions of
state if they depend on the state of the system. e.g:

• T is a function of state.

• Chemistry is not a function of state.

• Work ( W ) is not a function of state.

• Heat supplied ( Q ) is not a function of state.

The equation of state is a single relationship that links all of the parameters needed
to describe the system:
In the above example, the equation of state is:

T = f(P, V, m) (1.1)

f is generally found empirically and can be quite complex.

Note: Approach breaks down if some variable depends on the previous history of the
system (“hysteresis.”)
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1.3. Perfect Gas Temperature Scale

For very low pressures for real gases we find that for one mole of gas:

PV = RT (1.2)

Where R is the Gas constant. We can define a perfect gas temperature scale:

T =
lim

P→0

(
PV

R

)
(1.3)

The (thermodynamic) gas temperature scale is completely determined if we define R,
we do this by defining one point on the scale, this is the triple point of water ( T tr ).
The triple point was chosen so that the size of the “degree” in the gas scale equals as
closely as possible the degree Celsius.
Thus:

T tr = 273.16K

and:

T = 273.16
lim

P→0 (PV )T
lim

P→0 (PV )Ttr

(1.4)

and:
R = 8.31× 10−23 J mol−1K−1

Now, from Avogadro’s number N0 = 6.02× 1023 molecules mol−1 we can determine
the “gas constant per molecule.”

R

N0
= k (Boltzmann’s Constant)

= 1.38× 10−23 J K−1

(1.5)

So the equation of state of a perfect gas is the perfect gas law:

PV = NkT (1.6)

Where N is the number of molecules in the sample.

kT is physically significant. Classically kT is of the order of each component of the
energy of a molecule in a macroscopic body at temperature T .

Kinetic Theory of the Perfect Gas : Pressure

We can derive the perfect gas law from kinetic theory and this gives meaning to
pressure and temperature.
Assume we have N particles of gas in a box of volume V with one end terminated by
a frictionless piston. We apply a force F to balance the force (the momentum change
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per second due to particle impacts) exerted by the gas.
Then pressure on a particle is:

P =
F

A
(1.7)

Consider the collision of a particle of mass m and velocity v . We assume the
collision is elastic so energy (and ∴ v .) ∴ x component of momentum changes from
mvx to −mvx ∴ change in momentum and momentum delivered to piston is 2mvx

Now the number of particles per unit volume, n = N
V

During time interval t the only particles to hit the piston are those with positive vx

and within a distance vxt of the piston. These are in a volume vxtA and so therefore
there are nvxtA of them. So the number of particles hitting per second is nvxA If all
the particles have the same vx then the total force caused by these impacts would be
F = (nvxA) (2mvx) ∴ P = 2nvx

2m But the particle velocities and directions may

vary so take an average
〈
vx

2
〉
. But this includes those with -ve vx, so we take 〈vx

2〉
2

to get just the +ve vx ’s.
P = nm

〈
vx

2
〉

(1.8)

By symmetry:
〈
vx

2
〉

=
〈
vy

2
〉

=
〈
vz

2
〉

=

〈
v2

〉

3
(1.9)

P =
2
3
n

〈
mv2

2

〉
(1.10)

Where
〈

mv2

2

〉
is the average translational kinetic energy per particle.

Kinetic theory : Temperature

Consider 2 parts of a box with different gases, separated by a movable piston.
“Bombardment” must quickly move the piston to equalise the pressure ( P = n

〈
mv2

2

〉

) if the system is to be in equilibrium.

n1

〈
m1v1

2

2

〉
= n2

〈
m2v2

2

2

〉
(1.11)

Can we have equilibrium with a large value of n and a small value of V on the right
hand side and a small n but large V on the left hand side?

No! Because the piston is not static, but is “jiggling” left and right. If an energetic
particle on the left collides with and moves the piston to the right, then the particle
has lost some energy to the piston. If the piston then hits a particle on the right
hand side, that particle gains energy, i.e. energy is transferred between the sides and
equilibrium is achieved when the rate of energy transfer through the piston is the same
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same in both directions.
The solution is that average kinetic energies of gas particles must be equal:

〈
m1v1

2

2

〉
=

〈
m2v2

2

2

〉
(1.12)

∴
〈

mv2

2

〉
∝ T

So temperature has a physical meaning: For a perfect gas T is a measure of average
translational energy of particles. T is a measure of energy associated with molecular
(macroscopically unobserved) motion of a system.

Perfect Gas Law From Kinetic Theory

Is this temperature scale the same as we had before?

P =
2
3
n

〈
mv2

2

〉
(1.13)

n =
N

V
(1.14)

PV = N
2
3

〈
mv2

2

〉
(1.15)

This is just the perfect gas law:
PV = NkT

If: 〈
mv2

2

〉
=

3
2
kT (1.16)

The total translational kinetic energy of the gas is:

Etr = N
3
2
kT =

3
2
PV (1.17)

1.4. Particle Interaction Probability

If the gas is near (but not in) equilibrium, we can use kinetic theory to consider
molecular collisions.

Note: The averages in this section are assumed to be approximately the same. (We
omit small numerical factors.)
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1.4.1. Mean time between collisions for molecules in thermal
equilibrium

Any one molecule experiences a random series of collisions with other molecules.
In a long period of time t it will experience N collisions:

N ∝ T (1.18)

We can write N = t
τ where τ is the average time between collisions.

What is the chance of a collision in time δt ¿ τ?

Intuitively we know either:

• Fraction colliding in δt = (N0δt
τ )

(N0− δt
τ )

• Or, the probability of one molecule colliding in δt is δt
τ

We also want to know how far a molecule can go without collision (the “mean free
path”.) So we can also consider the probability of particles not colliding in time δt.

Start off with N0 molecules. Let N0(t) not collide between t = 0 and time t. So
N (t + δt) is going to be less than N (t) by the amount that have collided in extra
time, δt. Between t and t + δt, we start with N (t) collision less molecules and end
with N (t + δt) = N (t) + δN of them. But, the fraction colliding in time δt is δt

τ so:

δN (t)
N (t)

= −δt

τ
(1.19)

∴ N (t) = N0e
− t

τ (1.20)

To get the probability P (t) that any one molecule has no collision up to time t, which
is also the fraction not colliding up to time t.

P (t) = e−
t
τ (1.21)

The time from t = 0 to the next collision for any one particle is on average τ .

Note: t = 0 is an arbitrary start time and is not necessarily the previous collision
time.

1.4.2. The meanings of τ

1. The average time between collisions.

2. The average time to the next collision from any instance.

3. The average time from the last collision to any instance.
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1.4.3. Collision Mean Free Path

If average time between collisions is τ and the particles have average speed |v|, then
the average distance between collisions, the mean free path:

l = vτ (1.22)

Using the arguments above, the chance that a molecule will have a collision in a
distance δx is δx

l , and the rules for l follow the meanings of τ .
From any start position, the average distance a molecules travels without colliding is
l. The probability a molecule will travel x before it’s next collisions is e−

x
l .

1.4.4. Collision Cross Section

Mean free path depends on:

1. Density of particles.

2. How “big” a target each particle represents.

The collision cross section ( σc ) for a particle is just the area within which, an incoming
particle must be located if it is to collide.

Classically for spheres of radius r1 and r2 colliding we get that σc = π (r1 + r2)
2.

Consider a moving particle which travels a distance δx through a gas, with a density
n0 (i.e. with n0 “scatterers” per unit volume.) For each unit area perpendicular to
the direction of travel we have n0 δx molecules (“scatterers”), covering a total area of
σcn0 δx if each molecule is identical. The chance that the incoming particle will have
a collision in δx is just the ratio of the area covered by the targets to the total area (1
as we are using a unit area), so the probability is:

σcn0 δx

1

But the probability is also just δx
l , so:

σcn0l = 1 (1.23)

This means on average there will be 1 collision when the particle has gone through a
distance where the “scatterers” could just cover the area.

Note: In a column of unit area and length l in fact, the “scatterers” would not cover
the area completely because some would be hidden by others. So some molecules can
travel distances greater than l before colliding and, conversely, others travel less than
l. On average, however, particles will travel a distance l before colliding.
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1.5. Work, Heat and Energy : The First law of
Thermodynamics

The First Law of Thermodynamics concerns the conservation of energy.
Consider first a thermally isolated system (i.e. the walls do not transmit heat.) This
is an adiabatic system.

We can change the state of the system by doing work on it. If we do work on the
system the temperature , and the total of the system will rise (changing it’s state.)
Joule (1840) found that the work done ( W ) in changing a system from state 1 to
state 2 adiabatically is independent of the method used. We can then define a function
of state which we shall call E such that for one of these thermally isolated systems,
the work done W equals the change in the energy ∆E.

W = ∆E = E2 − E1 (1.24)

E is called the energy of the system. If we now consider the changes of state in a
system that is not thermally isolated:

∆E = W + Q (1.25)

Where Q is the heat energy supplied to the system.

So ∆E is a combination of the work done W and the heat energy supplied Q. This
is a statement of the First Law of Thermodynamics - conservation of energy applied
to processes involving macroscopic bodies, and recognising that heat and work are
separate forms of energy.

Note: ∆E is a function of state, but Q and W are not.

For infinitesimal changes, the First Law is written as:

dE = dQ + dW (1.26)

Note: d is a reminder that dQ and dW are not changes in functions of state.

1.5.1. What is E in general?

E is the sum of two contributions:

• The energy of the macroscopic mass motion of the system (the kinetic energy of
the centre of mass of the system plus and potential energy due to external fields
of force.)

• Internal energy of the system: Energy associated with the internal degrees of
freedom.

9
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We usually ignore the first of these and consider the energy E as referring to the
internal energy. So:

E = K.E.(molecular motion) + P.E(molecular interaction) (1.27)

i.e. E is associated with the random motions of the particles, also known as the
thermal energy.

E is a function of state. For a constant mass of fluid:

E = E (P, T )
E = E (V, T )





Depending on independent variables
we choose to specify the state of the system. (1.28)

What is E for a perfect gas?

We assume potential energy is negligible.

E =
kinetic energy
of translation +

rotational/vibrational
kinetic energy (in molecules.)

E = E(T ) only. This was proved by Joule’s experiment. If an ideal gas expands from
half a box into the whole box: W −Q = 0 ∴ ∆E = 0

Note: For real gases T drops slightly as work is done against the cohesive forces
within the gas. So E = E(T ) is the second criterion for a perfect gas.

Recall the two criteria for a perfect gas:

• Perfect gas law: PV = NkT = nRT

• Internal energy is a function of temperature:E = E(T )

Generally W and Q are not functions of state. Work and heat are, essentially, different
forms of energy transfer.

• Work: Energy transfer by macroscopic degrees of freedom of a system.

• Heat: Energy transfer by microscopic degrees of freedom of a system.

1.5.2. Example

Work is done during the isothermal compression of a perfect gas, the process is
reversible. Consider one mole of an ideal gas compressed by a piston, in contact with
a heat bath (a heat bath has a very large heat capacity and a constant temperature.)
Work done by the piston moving through a distance δx:

W = Force×Distance moved
W = PA · (−δx)

10
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Assuming compression is reversible, and occurs at an isotherm; PV = N0kT applies.
The work done on the gas in compressing it from a volume V to a volume V + δV is:

dW = −PδV

Note the -ve, since the change in volume is negative. ∴ for a change from V1 to V2 we
have:

W = −
∫ V2

V1

PdV = −
∫ V2

V1

N0kT

V
dV

= N0kT ln
(

V1

V2

)

W = RT ln
(

V1

V2

)
(1.29)

Note: For a different (non-isothermal) path between states 1 and 2 the work (are
under the curve) will be different. In a cyclical process we can have a net work done,
whereas in a δE around the cyclical path is 0 ( since E is a function of state.)

1.5.3. Reversibility & Irreversibility

To be reversible:

1. The process must be quasi-static.

2. There must be no hysteresis effect.

Quasi-static: When we can define every intermediate state of a process as a succession
of equilibrium states. A process is reversible if it’s direction can be reversed by an
infinitesimal change in the direction - this is an idealisation from reality. A non-
quasi-static change would be, for example, a sudden compression of a gas at pressure
P .

Hysteresis: When the state depends not only on instantaneous values of parameters,
but also on the system’s previous history.

Note: Reversibility is an ideal, all real processes are irreversible.

Example of non-quasi-static change:

Imagine a clamped piston with two masses on it, with the gas contained in the piston
at a pressure P . The piston exerts a pressure P0 with P0 > P . The clamp is released
causing a volume change δV . The work done by the mass on the system is:

dW = −P0δV

11
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Since: P0 > P and δV > 0. This leads to the statement:

dW > −PdV (1.30)

The same result applies for rapid expansion. An example of this would be the expansion
of gas into a vacuum. Here, no work is done on the gas ( −dW = 0 ) but PdV is
positive.

Example of hysteresis:

Compression with friction between the cylinder and piston. For the ideal situation,
dW = −PdV there must be no frictional forces between the cylinder and the piston.
If there is friction between them, then in compressing the gas the applied pressure
P0 > P in order to overcome the frictional forces, and dW > −PdV .

The dashed curve on the graph shows the gas pressure P and the continuous curve
shows the applied pressure P0 for compression and expansion of the gas. If we carry
out a cycle ABCDA the applied force has done a net amount of work given by the
area of the cycle. Some of the work, however, is lost as heat (and subsequently passed
into a heat bath.) ABCDA is a hysteresis curve and the process is irreversible. On
reversing external conditions the system will not traverse the original path.

Summary:
dW ≥ −PdV

dW

{
= −PdV , for reversible changes

> −PdV , for irreversible changes

1.6. Heat Capacity

Although the work is done in a reversible change is well defined, it does depend on
the path. We can join states 1 and 2 by many paths (we chose isothermal compression
in an example above). The work done is given by the area under the curve.

For curve A:

WA = −
∫ V2A

V1A

PdV (1.31)

In a cyclic process the work done is represented by the area inside the loop:
∮

PdV = WA −WB 6= 0 (1.32)

The work around a complete cycle does, therefore, not vanish, but:

∆E =
∮

dE = 0 (1.33)

12
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At any point on the path, E has a defined value because it is a function of state.
We had:

dE = dQ + dW

We also have for reversible changes:

dW = −PdV

So, therefore the First Law of Thermodynamics for a reversible change is:

dQ = dE + PdV (1.34)

We define heat capacities as:

C =
dQ

dT

The rate of heat input per unit increase in T per mole of gas. This is in W K−1 mol−1.
The specific heat, τ , is the same per unit mass.
Since dQ is not a function of state, we find that C depends on the mode of heating.

Heat capacity at constant volume (per mole.)

CV =
(

dQ

dT

)

V

=
(

dE

dT

)

V

(1.35)

Heat capacity at constant pressure (per mole)

CP =
(

dQ

dT

)

P

=
(

dE

dT

)

P

+ P

(
dV

dT

)

P

(1.36)

For a perfect gas E = E(T ), so:
(

dE

dT

)

V

=
(

dE

dT

)

P

(1.37)

Using PV = N0kT , this leads to:

CP − CV = P

(
dV

dT

)

P

= N0k = R (1.38)

Finally in the first law we must allow for all forms of work, (e.g. magnetic etc.)

13



2. The Second and Third Laws of
Thermodynamics

The first law covers energy balance and conservation, the second law governs a
processes direction.
“Left to itself a system, not initially in equilibrium, will change in a definite direction
towards equilibrium.”

2.1. Statements of the Second Law

Clausius (1850):

“Heat, by itself , cannot pass from a colder to a hotter body.”

Kelvin (1851):

“A process whose only effect is the complete conversion of heat to work
cannot occur.”

What is the efficiency?

Consider a system (a heat engine) that absorbs heat Q1, converts some to work
W , and rejects the remainder as Q2.
The first law says: W = Q1 − Q2 Thermal efficiency, η, is the proportion of heat
converted to work:

η =
W

Q1
=

Q1 −Q2

Q1
= 1− Q2

Q1
< 1 (2.1)

The general formulation of the second law was given by Clausius who, in 1854 and
1865, introduced the concept of entropy.

14
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2.1.1. Entropy as a measure of disorder

The macroscopic concept of ‘entropy’ S, is defined by (see later)

dS





=
dQ

T
, for a reversible change

>
dQ

T
, for an irreversible change (2.2)

Note: Entropy,S, is a function of state.

Boltzmann, in the 1870s, related entropy to the microscopic disorder of a system.
Given Any given macroscopic state can be in any one of an enormous number of
microscopic states. The course macroscopic description cannot distinguish between
these.

Our previous example of a gas expanding into a vacuum is an irreversible change.
So in the final state we have less knowledge of the system, in that, initially we know
all of the molecules are in one half of the container, after the expansion they fill the
container.
The final state is a less ordered, more random state.

“For any real process, the entropy of an isolated system always increases
to a maximum.”

Since entropy is a measure of the degree of disorder, it is a function of state.
For a change in the system between two definite states, ∆S is independent of how the
change occurs.

2.2. Macrostates and Microstates

Consider a real system containing N molecules (of the same type, for simplicity.)
The macrostate can be defined depending on the constraints.
Generally, conditions imposed on the system forcing certain variables to be fixed are
called constraints. Generally, we assume the system is enclosed and isolated. We can
fix E, V, N , which fully determine a macrostate of a system. In a non-equilibrium
state other quantities must be specified. Generally, we label the additional variables
α ( α1, α2...αn ).
The macrostate is then determined by ( E, V,N, α ).

15
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Microscopic description is very complicated, in equilibrium all we need to know is
how many microstates correspond to a given macrostate. Quantum mechanics helps
here as the microstates then form a discreet set and not a continuum. Which is to say,
every macrostate of a system comprises a perfectly discreet number of microstates of
the system.
The number of microstates that can give the same macrostate, and which have an
energy between E and E + δE give the statistical weight of the system, Ω.
For our isolated system:

Ω(E, V, n) , equilibrium state
Ω(E, V, n, α) , non-equilibrium state

There are several reasons for defining a macrostate as having an imprecise energy
lying in δE. Experimentally energy is only defined to some finite accuracy. We choose
δE for convenience, if it is large it may contain many microstates. This will mean
Ω(E, V, n, α) will be a smooth changing function of energy. If δE is small, Ω will be
wildly fluctuating, being different from zero when E coincides with a microstate.

Example - A paramagnetic solid in a magnetic field

Molecules, each having a magnetic moment, µ̄ (consider them as little bar magnets)
are arranged on the lattice sites of a crystal. When a B -field is applied, each molecule
(dipole) acquires an interaction energy.

−µ̄ ·B
This tends to align the dipole along the field, it is opposed by disorganising thermal
motion. Classically any orientation is allowed, but in quantum mechanics only certain,
specific orientations are.
For the simplest situation consider spin 1

2 dipoles (with angular momentum: ~2 ), only
two orientations can occur:

1. Parallel (spin-up) to the B -field, or...

2. Anti-parallel (spin-down) to the B -field.

So each dipole has two possible ‘one particle states’.
Spin up gives an energy of −µB. Spin-down gives an energy of µB. The energy states
differ by ∆E = 2µB.

Consider now a system of N dipoles in a B-field. If n are spin up, then (N − n) are
spin down. Then the energy of the system is:

E(B, V,N, n) ≡ E(n)
E(n) = n(−µB) + (N − n)(µB)
E(n) = (N − 2n)(µB)

(2.3)

E, and hence the macrostate, is determined by n. Ω is related to how many ways we
can choose n sites to be spin up and (N − n) sites to be spin down.
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Example: For N = 4, n = 2 there are six possible combinations. We have 2 possible
orientations of N sites, i.e. 2N microstates in total.
The number of microstates with energy E(n) is:

Ω(n) =
N !

n!(N − n)!
(2.4)

(See nCr)

We choose δE so that δE < 2µB. The interval δE contains << 1 energy levels and
Ω(n) is the statistical weight of the macrostate with energy E(n).
For n = N all dipoles are aligned parallel. The energy is a minimum, ‘E(n) = −µBN ,
this is the ground state. Here Ω(N) = 1 (there is only one microstate.)
For n = N

2 ⇒ E
(

N
2

)
= 0 this is a state with random orientation, the most disordered

state, the state we have if there is no B-field. Ω(n) attains it’s maximum here. Thus,
Ω is a measure of the disorder of the system.

2.2.1. Equilibrium of an isolated system.

Postulate of equal a priori probability.

The macrostate is fully specified by E, V and N . There are fluctuations about
equilibrium. Additional variables α must be defined, with a statistical weight for each
one.Over time a system will pass through all the possible microstates so long as the
values E, V and N are fixed.

For each value of α we expect that the corresponding Ω(E, V, N, α) microstates are
equally probable.
This leads to the postulate of equal a priori probability:

“For an isolated system all microstates compatible with the given con-
straints of the system are equally likely to occur.”

Result: The probability that a system is in a particular macrostate (E, V, N, α) is
proportional to the number of microstates Ω(E, V, N, α).

2.2.2. Equilibrium Postulate

“Equilibrium corresponds to that value of α for which our Ω(E, V,N, α)
attains it’s maximum value, with (E, V, N) fixed.”

Meaning: The equilibrium state is simply the state of maximum probability, that is
with a maximum statistical weight Ω.

17
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2.2.3. Entropy

Entropy (a measure of disorder) is defined by (Boltzmann):

S(E, V,N, α) = k lnΩ(E, V, N, α) (2.5)

Entropy reaches a maximum for the equilibrium macrostate.

Note: This gives us a zero point for the entropy, when Ω = 1 S = 0. This is the
situation of perfect order.

Clausius:

“Entropy of a real, isolated system always increases. In equilibrium entropy
is at a maximum.”

2.2.4. Temperature, Pressure and Chemical Potential as derivatives
of Entropy

We use the second law to derive the temperature, pressure and chemical potential
(T, P, µ) as functions of energy.

Consider an isolated system, separated into subsystems 1 and 2 by a partition.
Where heat can pass through the partition.
In equilibrium it’s macrostate would be given by:

(E, V,N) with E = E1 + E2, V = V1 + V2, N = N1 + N2 (2.6)

Assume now that the system is not in equilibrium, but with an overall small energy
exchange between the subsystems it will be. The number of microsystems for each
subsystem is:

Subsystem 1 has: Ω1(E1, V1, N1)
Subsystem 2 has: Ω2(E2, V2, N2)

The whole system has:
Ω(E, V, N, E1, V1, N1)

E1, V1 and N1 are our α’s.

Note: In equilibrium the number of microstates for the whole system is simply
Ω(E, V, N), E1, V1, N1 become other descriptors, α.
We do not use E2, V2, N2 as these are not independent of E1, V1, N1.
We can make any whole system microstate by taking a microstate from each of the
subsystems and combining them:

Ω = Ω1Ω2 (2.7)
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Thus, for the definition of S = k lnΩ we have:

S(E, V,N,E1, V1, N1) = S1(E1, V1, N1) + S2(E2, V2, N2) (2.8)

So entropies add just like E, V,N in (2.6), hence the logarithm.
These properties are proportional to the size of the system.

Extensive and Intensive variables.

• Quantities which are proportional to system size are extensive.

• Quantities that are not proportional to system size are intensive.

We can convert from extensive to intensive quantities by dividing by the system size.

2.2.5. Temperature as a derivative of entropy

We assume the partition is fixed by a diathermal (permeable to heat) divider.

• V1, V2, N1, N2 are fixed.

• E1, E2 are variable.

So we have one independent variable E.
From the second law we obtain the equilibrium condition by maximum entropy. From
(2.8) we have:

(
dS

dE1

)

E1,V,N,V1,N1

=
(

dS1

dE1

)

V1,N1

+
(

dS2

dE2

)

V2,N2

(
dE2

dE1

)
= 0 (2.9)

Since E1 + E2 = E:

⇒ dE2

dE1
= −1

So: (
dS1

dE1

)

V1,N1

=
(

dS2

dE2

)

V2,N2

(2.10)

Criterion For Thermal Equilibrium

We can define an absolute temperature scale, Ti for each subsystem.
(

dSi

dEi

)

Vi,Ni

=
1
Ti

(2.11)

Thus, two systems are in equilibrium with each other when T1 = T2.
The definition (2.11) is chosen so it is identical with the perfect gas temperature scale.

Is T positive? Yes, as Ω(E) is a rapidly increasing function of E. dS
dE > 0 ∴ T > 0.
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Are hot and cold correct? Yes. Consider a system coming to equilibrium:

dS

dt
=

(
dS1

dE1

)(
dE1

dt

)
+

(
dS2

dE2

)(
dE2

dE1

) (
dE1

dt

)

=
[(

1
T1
− 1

T2

)]
dE1

dt
> 0

(2.12)

If T1 < T2 then dE1
dt > 0, i.e. heat flows from hot to cold.

2.2.6. Pressure as a derivative of entropy

Now consider a movable, frictionless, diathermal partition:

• N1, N2 are fixed.

• E1, E2, V1, V2 can vary.

In equilibrium pressure and temperature are the same on both sides of the partition.
If the entropy S is maximised with respect to energy E and volume V , as independent
variables, one again obtains:

(
dS1

dE1

)

V1,N1

=
(

dS2

dE2

)

V2,N2

(2.13)

i.e. Equal temperatures.
As a second criterion: (

dS1

dV1

)

E1,N1

=
(

dS2

dV2

)

E2,N2

(2.14)

Which must be interpreted as implying equal pressures in the 2 sub systems. We define
the pressure as:

Pi = Ti

(
dSi

dVi

)

Ei,Ni

i = 1, 2, 3, ... (2.15)

This is identical (see later) with the conventional definition: PV = NkT .

The Clausius principle ( dS
dt > 0 ) applies, so that when not in pressure equilibrium the

sub system at higher pressure expands, and the sub system at lower pressure contracts.

2.2.7. Chemical potential, µ, as a derivative of entropy

Now consider using a fixed, porous, diathermal partition.

• V1, V2 fixed.

• E1, E2, N1, N2 can vary.
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We again get the first condition:
(

dS1

dE1

)

V1,N1

=
(

dS2

dE2

)

V2,N2

(2.16)

Maximising entropy with respect to N1 leads to a another condition:
(

dS1

dN1

)

E1,V1

=
(

dS2

dN2

)

E2,V2

(2.17)

i.e. There is no net transfer of particles.
We define µ by:

µ = −Ti

(
dSi

dNi

)

Ei,Vi

(2.18)

This is useful when subsystems have different phases. In equilibrium the µ values of
the phases must be equal.

2.3. Schottky defects in a crystal

• At T = 0 the atoms or molecules occur completely regularly in the crystal lattice.

• At T > 0 thermal agitation occurs, causing the vibration of particles. This
can lead to particles being displaced altogether from lattice sites leaving site
vacancies called point defects.

• One type of defect is called a Schottky defect, where the atom or molecule is
removed completely and migrates to the surface of the crystal.

2.3.1. How does the number of defects depend on the
temperature?

Let ε be the energy of formation of a Schottky defect, the binding energy of an atom
or molecule at the surface of the crystal relative to interior atoms or molecules (i.e. at
surface energy E = 0). Take a crystal of N atoms and in a certain macrostate. Say it
has n Schottky defects.
The energy of formation of these defects is: E = nε.
(We assume that n ¿ N , so each point defect is surrounded by a well ordered lattice
and therefore ε is well defined.)
The number of ways we can remove n atoms from a crystal of N atoms is the statistical
weight Ω(n) of the macrostate.

Ω(n) =
(

n
N

)
=

N !
n!(N − n)!

=n CN (2.19)
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The entropy associated with the disorder is:

S(n) = k ln[Ω(n)]

= k ln
[

N !
n!(N − n)!

] (2.20)

Note: We neglect a surface entropy effect due to the ways of arranging the n atoms
on the surface since it is relatively small.

For a crystal in thermal equilibrium:

1
T

=
dS

dE
=

dS(n)
dn

dn

dE
=

1
ε

dS(n)
dn

(2.21)

Since E = nε.
To calculate dS(n)

dn it is possible to use Stirling’s formula for N À 1:

ln(N !) = N ln(N)−N (2.22)

S(n) = k [N ln(N)− n ln(n)− (N − n) ln(N − n)] (2.23)

So:
dS(n)

dn
= k [− ln(n) + ln(N − n)] (2.24)

And:
1
T

=
k

ε
ln

(
N − n

n

)
(2.25)

Taking components and solving for n:

n

N
=

1
e

ε
kT + 1

(2.26)

For n ¿ N (i.e. ε À kT ), we get the concentration of defects as:

n

N
= e

−ε
kT (2.27)

2.4. Equilibrium of a system in a heat bath

2.4.1. Systems of a constant temperature and variation in energy

What do we mean by a constant temperature? We mean putting a system in a heat
bath at temperature T , where T is a constant. The equilibrium macrostate here is
specified by (T, V, N). The state is not specified by energy E now since at a constant
temperature there are tiny fluctuations in the energy. For a macroscopic system these
fluctuations are negligible but this is not true for a system with a small number of
particles. In the above (arbitrary) energy level diagram for an atom, we can see that
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the associated average energy Ē for the temperature T of the atom is between two
energy levels.

We consider one atom as a system in equilibrium with a “heat bath” of the other
atoms. E (and the microstate) fluctuate a lot, but in thermal equilibrium Ē (the time
average energy) is constant, as is the temperatureT .
We can consider a new system made up of these one particle sub systems and find the
probability (as a function of T ) that an isothermal system is in a certain macrostate -
the Boltzmann distribution.

2.4.2. The Boltzmann distribution for a system in a heat bath

Consider a system in a heat bath with N particles and a volume V . The equilibrium
macrostate for the system is specified by (T, V,N) - T is constant and E fluctuates.
The system has a discreet set of microstates :

i = 1, 2, 3, ..., r

With:
Ei = E1, E2, E3, ..., Er

Note: Many microstates may have the same energy, Ei are not all different. In general
the energy of a system is quantised.

Example: A paramagnetic solid, with four particles (N = 4).

We choose δE as the minimum spacing between energy levels, δE contains at most
one energy level. Using our previous analysis of a system partitioned by a diathermal
wall, we have our system being the atom and our heat bath being the other atoms.

Omitting all V and N as constants, we now have:

ESystem + EHeat bath = E0 (Constant)

Thus:
EHeat bath = E0 − ESystem

The macrostate of the combined system and heat bath is specified by E0 and ESystem,
and having Ω(E0, ESystem) possible microstates.

We can state:

1. The probability that the system and the heat bath are in the microstate specified
by (E0, ESystem) is proportional to Ω(E0, ESystem)
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2. Ω(E0, ESystem) = ΩSystem(ESystem) ΩHeat bath(E0 − ESystem)

Let us constrain the system to be in a single microstate r. Then:

ESystem = Er

And:
ΩSystem(ESystem) = ΩSystem(Er) = 1

From the second fact we have:

Ω(E0, ESystem) = ΩHeat bath(E0 − Er)

Thus, the probability Pr that our combined system and heat bath is in a macrostate
where the system is in a definite macrostate r is given by:

Pr ∝ ΩHeat bath(E0 − Er) (2.28)

The corrected, normalised probability is (summed over all of the states of the system):

Pr =
ΩHeat bath(E0 − Er)∑
r ΩHeat bath(E0 − Er)

(2.29)

ΩHeat bath(E0 − Er) is the “partition function.”

We can express this in terms of the entropy of the heat bath (using S = klnΩ):

Pr = Const. e
SHeat bath(E0−Er)

k (2.30)

So far this is general but the heat bath must have a lot more energy than the system,
i.e. E0 À Er, therefore we can expand SHeat bath(E0−Er)

k as a Taylor series:

f(x + h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) + ... (2.31)

1
k

SHeat bath(E0 − Er) =
1
k

SHeat bath(E0)− Er

k

dSHeat bath(E0)
dE0

(2.32)

Since, by definition: (
dSi

dEi

)

Vi,Ni

=
1
Ti

(2.33)

We have (since E0 À Er):
dSHeat bath(E0)

dE0
=

1
T

(2.34)

Where T is the temperature of the heat bath:

1
k

SHeat bath(E0 − Er) =
SHeat bath(E0)

k
− Er

kT
(2.35)
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So:
Pr ∝ e

SHeat bath(E0)
k e−

Er
kT (2.36)

The first term here is the constant of proportionality, obtained by normalisation. From
this we get the Boltzmann distribution:

Pr =
1
z
e−βEr (2.37)

Where, β is the temperature parameter 1
kT and z is the normalising partition function∑

r e−βEr . e−βEr is sometimes called the “Boltzmann factor”.

The Boltzmann distribution tells us the probability that a system at a constant tem-
perature T will be in a state with energy E. It depends on Er and T .

2.4.3. Discreet probability distribution in energy

The partition function is the sum over all states r. We sometimes define g′(Er) as
the number of states with energy Er (the degeneracy). Therefore, we can regroup the
summed terms in the partition function z as a sum over energies rather than states.

z =
∑

Er

g′(Er)e−βEr (2.38)

Since there are g′(Er) states with energy Er the probability that a system is in a state
with energy Er is:

P (Er) =
1
z
g′(Er)e−βEr (2.39)

The discreet distribution in energy.

2.4.4. Mean energy and fluctuations

Now consider: (
d ln z

dβ

)
≡

(
d ln z

dz

)(
dz

dβ

)

=
1
z

(
dz

dβ

)

=
1
z

∑
r

[−Ere
−βEr

]

= −
∑

r

PrEr

(2.40)

Using the equations for Pr and z this just becomes the mean energy Ē.
So for a system in a heat bath the mean energy is:

Ē =
∑

r

PrEr = −d ln z

dβ
(2.41)
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It can be shown that for a system of N particles the relative size of energy fluctuations
is ∆E

E ∼ 10−11, i.e. very small.

2.4.5. Continuous probability distribution in energy

To derive the discreet distribution in energy we made δE a lot less than the energy
level spacing.

Generally the number of energy levels in a ‘reasonable’ value of δE is huge. Therefore,
we use a continuous energy distribution.

Define P (E) as the probability per unit energy (probability density function), so
P (E)δE is the probability of the system having energy from E to E + δE.

We define the density of states g(E) so that g(E)δE is the number of states in the
interval E to E + δE.

If Er ∼ E throughout the interval then with pr being the probability of the system
being in a state with energy E, we get the result:

P (E) = prg(E)δE (2.42)

Which gives the continuous form:

P (E) =
1
z
g(E)e−βE (2.43)

And normalising we get:

z =
∫

E

g(E)e−βEδE (2.44)

Note: In some cases f(E) is used in place of g(E).

For a real system g(E) increases rapidly with an increase in E, and e−βE decreases
rapidly with an increase in E.

2.4.6. Entropy and the Helmholtz free energy

Previously entropy was defined for the special case of an isolated system. We now
generalise that and then apply it to a system in a heat bath.
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Consider a macroscopic system with microstates 1, 2, 3, ..., r and we let pr be the prob-
ability that the system is in a microstate r. The only constraint is normalisation:

∑
r

pr = 1

The general definition of entropy is:

S = −k
∑

r

pr ln(pr) (2.45)

We can show that this reduces to the original definition for an isolated system. For
an isolated system with energy E to E + δE there are Ω different microstates with
energy Er in their interval. Hence, the probability pr of finding the system in one of
these states is:

pr =
1

Ω(E, V, N)∑
r

pr = 1

If there are Ω non-zero terms in (2.45) and pr = 1
Ω for each of there:

S(E, V, N) = k lnΩ(E, V, N) (2.46)

In agreement with the earlier definition.

To get the entropy of the system in the heat bath at temperature T . We substitute
the Boltzmann distribution in:

S(T, V, N) = k ln z +
Ē

T
(2.47)

Note: This is a function of T , not E for an isothermal system.

For a macroscopic system at T we know that ∆E
E for the bath is negligible, i.e. the

energy is well defined.

Hence, the entropy of a body in a heat bath is sharply defined and is equal to the
entropy of an isolated body with energy equal to Ē of a system at temperature T .

S(T, V, N) = k lnΩ(E, V, N) (2.48)

Table 2.1 contains a summary of the variables for isolated systems and systems in a
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Isolated system System in heat bath
Independent vars (E, V, N) (T, V,N)
Basic stat. quantity Ω(E, V, N) Z(T, V,N) =

∑
r e−βEr

Basic t.d. quantity S(E, V, N) F (T, V, N)
Eqm. cond. S is at a maximum. F is at a minimum.

Table 2.1.: Variable comparison in isolated systems and systems in a heat bath show-
ing: The independent variables, the basic statistical quantity, the basic
thermodynamic quantity and the equilibrium condition for both types of
system.

heat bath. In the above table (Table 2.1) F is the “Helmholtz free energy:”

F (T, V, n) = −kT ln [z(T, V,N)] (2.49)

Eliminating z from (2.47) and (2.49) we obtain:

F = E − TS (2.50)

We have replaced Ē with E for a well defined system. Equations ((2.48) or (2.49) tell
us the choice of independent variables (E, V,N) or (T, V,N), which leads to using S
or F .

Note: Be aware of the conditions for equilibrium in the above table.

2.5. Infinitesimal Changes : Maxwell Relations and
Clausius’ Principle

What is the entropy change dS for a change between 2 very close states in an isolated
system (with N constant)?

V → V + dV

β → β + dβ β =
1

kT
(The temperature constant.)

E =
∑

r

prEr (2.51)

∴ dE =
∑

r

Erdpr +
∑

r

prdEr (2.52)

For a system in a heat bath we know that Er varies with V but not with β. pr varies
with both V and β (Boltzmann distribution) since pr = 1

z e−βEr .
So:

zpr = e−βEr (2.53)
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ln(z) + ln(pr) = −βEr (2.54)

Consider the terms in (2.52).
First:

∑
r

Erdpr =
(−1

β

) {∑
r

ln(z)dpr +
∑

r

ln(pr)dpr

}

=
(−1

β

) (∑
r

ln(prdpr

) (2.55)

As the sum of all probability changes has to be zero.

Recall:
S = −k

∑
r

pr ln(pr) (2.56)

∴ dS = −k

{∑
r

ln(pr)dpr +
∑

r

prd(ln(pr))

}
(2.57)

dS = −k (Er ln(pr)dpr) (2.58)

∴
∑

r

Erdpr = TdS (2.59)

Returning to the second term in (2.52):

∑
r

prdEr =
∑

r

pr
dEr

dV
dV (2.60)

Now if the system is in microstate r and stays in that state then a volume change dV
implies an energy change.

dEr =
dEr

dV
dV = −PrdV (2.61)

So if we have a probability distribution pr of the system in state r, the total pressure
is:

P =
∑

r

pr

(−dEr

dV

)
(2.62)

So: ∑
r

prdEr = −PdV

This is valid for quasi-static changes.

∴ dE = TdS − PdV (2.63)

Compare (2.65) with the first law of thermodynamics:

dE = dQ + dW
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For infinitesimal, reversible changes:

dW = −PdV

dS =
dQ

T

(2.64)

If the system and the heat bath are at the same temperature, and we supply heat dQ
reversibly, entropy increases by dQ

T .

For an irreversible change this becomes:

dW > −PdV

In fact both the Kelvin and Clausius statements for the second law follow from this
in-equality.

From (2.65) we have two useful relationships:

T =
(

dE

dS

)

V

P = −
(

dE

dV

)

S

(2.65)

And since:
d2E

dV dS
=

d2E

dSdV
(2.66)

(
dT

dV

)

S

= −
(

dP

dS

)

V

(2.67)

This is one of the Maxwell relations.

There are three other Maxwell relations that hold for any equilibrium system. We can
derive these relationships from the Helmholtz free energy F .

F = E − TS dE = TdS − PdV (2.68)

⇒ dF = −SdT − PdV P = −
(

dF

dV

)

T

(2.69)

Since F = −kT ln(z) we will use this later to derive the pressure of a system in a heat
bath from the partition function z.
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2.5.1. Clausius’ principle

In general going from state 1 to state 2 means:

∆S = S2 − S1 (This is > 0 for a real system.)

Entropy increases.If the change is reversible ∆S = 0.

Consider a system with a piston (T, P ) in a very large heat bath at (T0, P0). For an
isolated composite system:

∆STotal = {∆SSystem + ∆SHeat bath} ≥ 0 (2.70)

We can transfer heat Q from the heat bath to the system by moving the piston. Since
T0 and P0 are constant we can reversibly transfer heat to and from the heat bath.

∆SHeat bath =
−Q

T0

∆SSystem − −Q

T
≥ 0

(2.71)

We can apply the first law to the system:

∆E = Q + W

If the heat bath does work on the system then:

W = −P0dV

Q = ∆E −W

So we get:

∆SSystem −
{

∆E + P0dV

T0

}
≥ 0 (2.72)

This is the Clausius in-equality, it depends on both the system and it’s surroundings.
It may be written:

∆A ≤ 0 (2.73)

Where: A ≡ E + P0V − T0S.

A is the “availability”, a property of the system and it’s surroundings.
If ∆A ≤ 0 then the availability of the system in the given environment tends to
decrease. In equilibrium ∆A has a minimum value, no further changes are possible.

dS =
dQ

T
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Example: Water being heated by heat transfer from a heat bath.

We have a heat bath at 80 ◦C and 1 litre of water at 20 ◦C. The specific heat of water
is:

C = 4.2 J g−1 ◦C−1

The heat supplied by the heat bath:

Q = (−)1000× 4.2× 60 J

So the entropy change:

∆SHeat bath =
Q

T

THeat bath = 353 K

So:
∆SHeat bath = −713.9 J K−1

Since the temperature of the water is changing:

∆SWater =
∫ State 2

State 1

dQ

T

dQ = MCdT (2.74)

So for:
T1 = 20◦C T2 = 80◦C

∆SWater = MC

∫ 2

1

dT

T
= MC ln

(
T1

T2

)

= 4200 ln
(

353
293

)

= 782.4 J K−1

Therefore, the net change in entropy ∆S = 68.5 J K−1. This is because the process is
irreversible.

Now consider a two stage heating process with the following stages:

1. A heat bath at 50 ◦C and 1 litre of water at 20 ◦C.

2. A heat bath at 80 ◦C and 1 litre of water at 50 ◦C.

With this we get:

Stage 1 entropy change: ∆Sb1 = −390.1 J K−1

Stage 2 entropy change: ∆Sb2 = −356.9 J K−1
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∆STotal = −747.0 J K−1

∆SWater = 782.4 J K−1

∆SNet = 35.4 J K−1

If we increase the number of stages towards ∞ then ∆S tends towards 0 and the
process is reversible.

2.5.2. Heat Engines

Consider an engine which obeys the second law (i.e. a real engine). The engine
operates in a cycle. Heat Q1 is extracted from a hot bath at T1, work W is done by
the engine, and heat Q2 is rejected to a cold bath at T2.

• First law: Q2 = Q1 −W

• Second law: ∆S =
(
−Q1

T1

)
+

(
Q2
T2

)
≥ 0

The efficiency of the heat engine:

η =
W

Q1

Since ∆S ≥ 0:

−Q1

T1
+

Q1 −W

T2
≥ 0

−Q1

T1
+

Q1(1− η)
T2

≥ 0
(2.75)

Therefore:
η ≤ 1− T2

T1
(2.76)

This maximum value of η is only possible is the process is reversible.

η depends on the temperatures of the heat baths. It is often difficult to reduce T2 so
we increase T1 to increase η.

Example: In a steam engine:

T1 ≈ 800 K T2 ≈ 300 K

So T2 is aboce room temperature.
This gives:

ηMax ≈ 0.62

In reality we only acheive ηMax
2 .
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2.6. Third Law of Thermodynamics

What is the zero point of entropy? (i.e. S of a system cooled to T → 0 K).
Can we reach T = 0?

Consider a system with energy levels E1 < E2 < E3 < ... < Er, with degeneracy gr

for each energy level.
When T is so low that kT ¿ E2 − E1 then only the lowest level has a significant
probability of occupation.

p(E1) ≈ 1

So, as S = k ln(Ω), limT→0 S → k ln(g1).

Now the ground state of any system is non-degenerate (i.e. g1 = 1). Therefore as
T → 0, S → 0.
This leads to the following statement:

“The entropy of a perfect crystal of an element at T = 0 is zero.”

This follows from the Nernst-Simon statement of the third law:

“If ∆S is the entropy change during any reversible, isothermal process in
a condensed system, then ∆S → as T → 0.”

2.6.1. Absolute zero is unattainable

An alternate statement of the third law:

“It is impossible to reduce the temperature of any system, or part of a
system, to absolute zero in a finite number of operations.”

x1 and x2 are values of some parameter (i.e. magnetic field strength) which can be
varied. In a finite series of isothermal (∆T = 0) and adiabatic (∆S = 0) T = 0
could be reached but it would violate the third law, since the third law says that as
T → 0, S → 0. As the third law applies for all values of x the temperature reduction
for each adiabatic change gets smaller and smaller, and so you can get arbitrarily close
to absolute zero, but you cannot reach it in a finite number of operations.
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3. Energy Distributions of Weakly
Interacting Particles

This section does not deal with the fundamental force, nor WIMPs, rather it looks at
the differences between bosons and fermions.

• Bosons

Obey Bose-Einstein statistics

Have an integral spin quantum number.

Spin angular momentum: 0, ~, 2~, 3~, ....
Examples: Photons, π and k mesons....

No restriction on the occupation numbers (i.e. not restricted by the Pauli
Exclusion rinciple.) nr = 0, 1, 2, 3, ....

• Fermions

Obey Fermi-Dirac statistics and the Pauli Exclusion Principle.

Spin angular momentum: ~2 , 3~
2 , 5~

2 , ....

Examples: Electrons, positrons, protons, neutrons...

Occupation numbers restricted, at most one particle can occupy any one
state. nr = 0, 1 (For all r)

3.1. Thermal energy distributions

Consider an isothermal system of N particles.
We weant the thermal energy distribution - the partition (arrangement) of particles
amongst the energy levels. Since this is rapidly changing, we take a time average. We
can use discreet and/or continuous distributions, e.g. in a discreet distribution, the
mean fraction of particles at an energy E is just n(E)

N .

Note: The mean fraction at energy E is the same as the probability pE of finding
any particle with energy E at any particular time.

For a single particle system at constant temperature and hence a constant average
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energy, we have the Boltzmann distribution:

p(E) =
1
z
g′(E)e−βE

z =
∑

E

g′(E)e−βE
(3.1)

Does this apply to a particle in a collection? Generally, no.

We tend to use the mean number distribution, so:

n′(E) : Discreet
n(E) : Continuous

Discreet energy distributions

So we have:

• n′(E) : The mean number of particles with energy E.

• g′(E) : The number of quantum mechanical states with energy E (i.e. the
degeneracy of the energy level at E.)

• f(E) : The mean number of particles per (one particle) state at E.

We have here:
n′(E) = g′(E)f(E) (3.2)

The total number of particles is N , therefore:

N =
∑

E

[n′(E)] =
∑

E

[g′(E)f(E)] (3.3)

The total energy is then:
ETotal =

∑

E

[n′(E)E] (3.4)

And the mean energy of any particle is:

Ē =
∑

E [n′(E)E]
N

(3.5)

The probability of a particle having an energy E is:

p(E) =
n′(E)

N
(3.6)
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Continuous energy distributions

Where δE is much larger than the spacing between the energy levels, we have:

• n(E) : The mean number of particles per unit energy.

• g(E) : The number of quantum mechanical states.

• f(E) : The mean number of particles per (one particle) state.

We have:
n(E) = g(E)f(E) (3.7)

N =
∫

E

g(E)f(E)dE (3.8)

The total energy is:

ETotal =
∫

E

n(E)EdE (3.9)

Average energy is:

〈E〉 =

(∫
E

n(E)EdE
)

N
(3.10)

The probability per unit energy at energy E is:

p(E) =
n(E)
N

(3.11)

In general we need to find g′(E) or g(E) and f(E) which depend on the type of particle
and the constraints on the system.

3.1.1. The mean number of particles per state, f(E) as a function
of T

At any T , f(E) is determined by the system and the particle states. f(E) is often
referred to as the “statistics” of the system.
f(E) for localised particles (e.g. in a solid) is weakly interacting. Particles are dis-
tinguishable by their position in the lattice, but are not individually distinguishable.
(Swapping particles with some the same one-particle state does not create a new mi-
crostate.)
AAll possible arrangments are allowed and we can consider the particles independently.

p(E) is as for separate particles. So:

n(E) = Np(E)

Hence:
n′(E) =

N

z
g′(E)e−βE (3.12)
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But:
n′(E) = g′(E)f(E)

So:
f(E)
N

=
e−βE

z
(3.13)

Note: The N particles are split into their possible states in the same ratio as z is
split into Boltzmann factor terms.

So:
f(E) =

N

z
e−βE = Ae−βE = e−(α−βE) (3.14)

For localised particles:

f(E) =
1

eα+βE
(3.15)

Where A = N
z and α = − ln

(
N
z

)
, and they both depend on the system and the number

of particles.
They can be found by normalising:

N =
∑

E

g′(E)f(E)

N =
∫

E

g(E)f(E)
(3.16)

3.1.2. f(E) for a perfect (quantum) boson gas

In a perfect gas, the particles are indistinguishable. Swapping particles does not
create a new microstate, it is fully specified by the number of particles in each one-
particle state. Particles cannot be considered individually, we have have to consider
the ground partition function. (This is complex to derive so we just state results.)

For Bosons, we use Bose-Einstein statistics:

fBE(E) =
1

eα−βE − 1
(3.17)

Where α is again a constant found by normalising.

3.1.3. f(E) for a perfect (quantum) fermion gas

Again, particles are indistinguishable. The Pauli exclusion principle imposes an
additional constraint: nr = 0, 1 (For all r).
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For fermions, we use Fermi-Dirac statistics:

fFD(E) =
1

eα+βE + 1
(3.18)

Again, α is found by normalisation.

3.1.4. f(E) for a perfect classical gas

Again, all particles are indistinguishable. For a classical gas we assume that there
are many more one-particle states available at any energy than there are particles with
that energy, i.e. the number of particles n′(E) ¿ g′(E) or f(E) ¿ 1 (this is valid for
a dilute gas.) The probability that any state is occupied by more than one particle
here is incredibly small.

For a classicla gas, we use Maxwell-Boltzmann statistics:

f(E) =
N

z
e−βE =

1
eα+βE

(3.19)

3.1.5. α and the chemical potential, µ

In all cases:
β =

1
kT

It turns out that:
α = −µβ =

−µ

kt
(3.20)

In all cases we can replace the term eα+βE with eβ(E−µ).

3.1.6. Density of states g(E)

For localised particles, e.g. a particle in a solid state lattics, there is generally only one
one-particle state corresponding to each energy level. i.e. The degeneracy g′(E) = 1.
g(E) is the number of particles per unit energy.

Example - A Paramagnetic Solid

The mean magnetic moment:

µ̄ = µp ↑ +(−µ)p ↓ (3.21)

Writing x ≡ µB
kT , then z = ex + e−x, and:

µ̄ =
µ(ex − e−x)

z
= −µB tanh(x) (3.22)
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And then, the mean energy is:

Ē = −µBp ↑ +µBp ↓= −µB tanh(x) (3.23)

For a solid of N non-interacting particles, then, we have:

E = −NµB tanh(x) (3.24)

The magnetisation curve per unit volume is:

I =
M

V

With M the magnetic moment.

M = Nµ tanh(x)

I =
Nµ

V
tanh(x) (3.25)

For x ¿ 1 tanh(x) ∼ x and for x À 1 tanh(x) ∼ 1.
Therefore, for x ¿ 1:

I ∼ Nµ

V
x =

Nµ2

V kT
B (3.26)

So magnetisation is linearly proportional to the applied magnetic field (for small B or
large T ).

M = χH

Where: H =
B

µ0

(3.27)

With χ the magnetic susceptibility.
So:

χ =
Nµ2µ0

kT
(3.28)

This gives rise to Curie’s law.

χ ∝ 1
T

This relationship can be implemented to make a thermometer.

3.2. A gas of particles in a box

To find g(E) for agases in general we use quantum mechanics and consider the
particles as waves - either matter waves (for electrons/atoms/molecules etc.) or elec-
tromagnetic waves (for photons etc.).

In quantum mechanics the energy of a particle E is a simple function of it’s wave’s
angular frequency:

ω = 2πf
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First of all find the density of states as a function of the angular frequency:

ω : g(ω)

Assuming that the particle waves are in a closed box of fixed volume V , then the
particles will be standing waves.

g(ω) is the number of states per unit ω at the specified value of ω. This is equivalent
to the number of possible standing wave nodes per unit ω at ω. We have the boundary
condition that the waves must have nodes at the volume boundaries.

In 1-dimension the permitted wavelengths are:

λ =
2L

n

Where n is an integer ≥ 1. The permitted wavelengths are then:

k =
2π

λ
=

πn

L

In 3-dimensions the wavenumber vector k has components kx, ky, and kz. The box
has the dimensions Lx, Ly, and Lz. So the permitted k components are:

kx =
πnx

Lx
, ky =

πny

Ly
, kz =

πnz

Lz

By Pythagoras we have that:

|k|2 = kx
2 + ky

2 + kz
2 = k2

=
π2n2

L2

(3.29)

Now let Lx = Ly = Lz = L, i.e. a cube for convienience.

For each value of the magnitude of the wavenumber k we have a certain value of
n (if L is fixed), but a number of different combinations of nx, ny, and nz. Each
combination represents a different direction. Only discreet values of k are allowed,
and each combination of wavenumber and direction is a mode.

We need to calculate how many possible modes (g(E)) there are for a range of k.
Consider nx, ny and nz as orthogonal axes. Then the vector n, with magnitude n,
defines points on the surface of an octant of a sphere. Each unit cube within this
octant represents a possible combination of nx, ny and nz. Thus, the number of
possible states up to a value of n is just the number of unit cubes, i.e. the volume of
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of an octant of a sphere radius n, is πn3

6 .
The volume per point in k-space is:

(π

L

)3

Since: k =
(π

L

)n

The number of modes of standing waves with wave-vectors whose magnitude lies in
the interval k → k + δk is equal to the number of lattice points in thise k-space lying
between two shells, centred on the origina, of radii k and k + δk in the positive octant.
The volume of this region is:

πk2

2
Therefore, the number of standing wave modes with a wave-vector whose magnitude
lies in the range k → k + δk is:

g(k)dk =
πk2dk

2(
π
L

)3

=
V k2dk

2π2

(3.30)

Where V = L3.

Since the waves phase velocity is v = ω
k the number of modes per unit ω at ω is:

g(ω) =
V ω2

2π2V 3
(3.31)

Notes:

• We did this for a cubic box but the result holds for any shape.

• The particles may have other independent variables (e.g. polarisation, spin, etc.)
which could mean more modes are allowed, i.e. for 2 polarisations g(ω) is doubled
etc.

g(ω) is the density of states as a function of ω, we can convert this to g(E) using the
relationship between ω and E (for the particle involved), we use the equality:

g(E)dE = g(ω)dω

The momentum of a particle p is related to it’s wavevector k by the following.

p = ~k

∴ ω =
2πν

h
p

(3.32)
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So, since:
g(p)dp = g(ω)dω

g(p) = g(ω)
dω

dp

We have:

g(p)dp =
V 4πp2

h3
dp (3.33)

3.3. Bosons : Black Body Radiation

We consider a photon gas in a closed, opaque box. The walls of the box are con-
tinuously emitting and absorbing photons and the gas and the walls are in thermal
equilibrium at a temperature T .

Instead of using n(E) it is more useful to find:

n(ν) = g(ν)f(ν)

Where ν is the frequency of the photons.

Finding the mean number of particles per state, f(ν)

• Photons behave in many ways like particles of spin ↑.
• Photons are bosons and, hence, obey Bose-Einstein statistics.

• The photons in the photons gas do not interact, i.e. the photons gas is a perfect
gas.

• The continual emission and absorbtion of photons leads to thermal equilibrium,
and also means that the number of photons is not constant, but fluctuates around
a mean.

We now have:
f(E) = fBE(E) =

1
e(α+βE) − 1

(3.34)

Since the number of photons in the box, N , is not fixed it turns out that α = 0. So
now we have:

fBE(E) =
1

eβE − 1
(3.35)

Since E = hν, we can write this as:

fBE(ν) =
1

eβhν − 1
(3.36)
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Finding the density of states, g(ν)

Electromagnetic waves have 2 independent polarisations (e.g. left hand and right
hand circular). So that means that the number of modes will be twice that calculated
before. Hence:

g(ω) =
V ω2

π2c2
(3.37)

Waves have ω = 2πν, so dω
dν = 2π. But the number of states in the interval dω is

g(ω)dω = g(ν)dν so:

g(ν) = g(ω)
dω

dν
=

8πV ν2

c3
(3.38)

Finding the density of the radiation

The mean number of photons per unit frequency interval is simply:

h(ν) = g(ν)f(ν) =
8πV ν2

c3 (eβhν − 1)
(3.39)

Over the frequency interval ν → ν +dν. Each photon has an energy of hν, so the total
average energy per unit frequency interval is n(ν)hν.

So the energy density of the radiation in the box, per unit frequency interval gives us
the energy per unit volume per unit frequency interval:

u(ν) =
n(ν)hν

V
(3.40)

If we use β = 1
kT we find:

u(ν) =
8πhν3

c3
(
e

hν
kT − 1

) (3.41)

Which is the Planck Radiation Equation, with units of J m−1 Hz−1. This is the energy
density distribution as a function of frequency, ν, and temperature, T .

3.3.1. Radiation : Some basic definitions and units

Table 3.1 contains some basic definitions of terms and their units. All of the quanti-
ties can can have values per unit wavelength (i.e. for monochromatic light). Isotropic
radiation has equal radiation output from any direction. This isotropic irradience
means the radiance from a surface is equal in any direction within 2π steradians.

Converting energy density to radiance or radiant flux density.

Returning to a gas of photons in a box. Consider the photons in any frequency
interval ν → ν + dν. The energy density of the photons in the box, in that frequency
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Quantity etc. Definition Units
Radiant Flux The total radiant power. W

Radiant Flux Density The total radiant power intercepted W m−2

by a unit area of a plane surface.
Irradience Incident radiant flux density. W m−2

Emittence (or Exitence) Outgoing radiant flux density. W m−2

Radiance In a particular direction, W m−2 Sr−1

the radiant flux per unit solid angle,
per unit area projected perpendicular
to that direction.

Table 3.1.: Radiation definitions and units.

interval is u(ν)dν, and the radiation is isotropic.

We want to know what fraction of photons in the box are travelling in approximately
one dimension, say the z-direction. Let us take a small range of directions represented
by an element dΩ steradians of solid angle, centered on the +z-direction. This fraction
of photons is just:

dΩ
4π

This must also be the fraction of the energy density due to these photons (let us call
them z-photons.) So, the energy due to the z-photons is:

u(ν)dνdΩ
4π

(3.42)

Suppose that in the box there is a plane surface of unit area, perpendicular to the z-
direction. The energy per unit time (power) per unit area passing through the surface
is the average value of the Poynting vector 〈s〉:

〈s〉 = 〈u〉 c

Where, 〈u〉 is the average energy density.

Now if dΩ is very small, we can conclude that all of the z-photons pass through the
surface. Therefore we can replace 〈u〉 by u(ν)dνdΩ

4π . Now we get that the power per
unit area crossing the surface is:

u(ν)c
dΩ
4π

dν (3.43)

Now we divide by dΩ, to get the radiance, and by dν, to get the spectral radiance:

RBB =
u(ν)c
4π

(3.44)
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So, the spectral radiance as a function of frequency is:

RBBν
=

2hν3

c2
(
e

hν
kT − 1

) (3.45)

These expressions are independent of the position, direction and nature of the walls
of the container holding the photons. They are the Planck functions for black-body
radiation.

Black-body radiation

“A black-body is a theoretical ideal substance which absorbs all radiation
falling on it, αBB = 1 at all wavelengths.”

The absorbtivity, α, is a measure of the fraction of incident radiation which is absorbed.
So 1−α of the incident radiation is reflected or transmitted. Certain substances have
α ≈ 1 at some wavelengths. (e.g. soot has an α ≈ 0.95 at visible wavelengths, water
has an α ≈ 0.98 at infra-red wavelengths around 10 µm.)

The best experimental approximation to a black hole is a large, closed, opaque box,
with a small hole in it. Radiation entering the box will be reflected many times off of
the walls and only a very small fraction of the radiation will re-emerge through the
hole.

If we give the walls of the box a uniform temperature, T , then the hole is also emit-
ting the box’s thermal radiation with the same spectral irradiance etc. as the Planck
functions. So the irradiance inside a box at temperature, T , is the same as the emit-
tance of a black-body at a temperature, T . So in a uniform temperature box we have
black-body radiation.

We can also have Planck functions in terms of the wavelength, λ, of the radiation,
IBBλ

and RBBλ
. By equating the emittence in intervals of dν and dλ.

IBBν dν = IBBλ
dλ (3.46)

We have, IBBν , and dν
dλ = c

λ2 (from ν = c
λ ), so:

IBBλ
=

2πhc2

λ5
(
e

hc
λkT − 1

) = πRBBλ
(λ, T ) (3.47)

Notes:

1. As temperature increases, the peak frequency increases and wavelength de-
creases.
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2. As temperature increases, the curves lie above the lower temperature curves at
all frequencies.

3. At any temperature each curve has three parts: an energy tail in the frequency
distribution, a peak frequency, and a rapid fall off at higher frequencies.

4. At any temperature, the total radiance is just the integral
∫

ν
Rνdν, i.e. the area

under the curve.

5. Two spectral distributions as functions of frequency, ν, and wavelength, λ, have
different shapes for the same spectrum, the intensity maxima appear at different
wavelengths. As an example, for solar radiation λ(Iλ max) ≈ 450 nm in the
green region of the spectrum, but λ(Iν max) ≈ 800 nm in the red region of the
spectrum1.

3.3.2. Various black-body laws and facts

Stefan-Boltzmann law

For any temperature, T , we can integrate the spectral emittence expression for IBBν

or IBBλ
, over all ν or λ, to get the total emittence of a black body, IBB. We have, for

spectral emittence in W m−2 Hz−1:

IBBν (ν, T ) =
2πhν3

c2
(
e

hν
kT − 1

) (3.48)

IBB(T ) =
∫ ∞

0

IBBν (ν, T )dν W m−2 (3.49)

If we put x = hν
kT , then dν = dx

(
kT
h

)
, giving:

IBB(T ) =
∫ ∞

0

[
2πk4T 4

h3c2

] [
x3

(ex − 1)

]
dx (3.50)

But: ∫ ∞

0

x3

(ex − 1)
dx =

π4

15
(3.51)

So:
IBB(T ) = σT 4 W m−2 (3.52)

Where, σ = 2π5k4

15c2h3 ' 5.67× 10−8 W m−2 K−4, the Stefan-Boltzmann constant.

Note: In terms of the energy density we have that:

u(T ) = aT 4 (3.53)

Where, a = 4σ
c ' 7.56× 10−16 W m−3 K−4.

1The reason for this is that |dν| = c
λ2 |dλ|. As wavelength, λ, increases and frequency, ν, decreases,

equal intervals in dλ correspond to different intervals in dν across the spectrum.
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Wien’s displacement law

The wavelength of maximum spectral emittance for RBBλ
(λ, T ) is:

λmax =
b

T
(3.54)

Where, b = 2900 µm K.

Note: We will not get the same λmax for Iν , since Iν and Iλ are different functions.
Maximising RBBν

(ν, T ) instead, we get:

λmax (RBBν (ν, T )) =
b′

T
(3.55)

Where, b′ = 5100 µm K.

Mean photon energy

The mean photon energy is the total energy divided by the number of photons.
∫∞
0

RBBν dν
R∞
0 RBBν dν

hν

= hν = 2.7012kT (3.56)

So the mean photon energy is of the order of kT .

Rayleigh-Jeans Law (Low energy limit)

The Rayleigh-Jeans law is applicable for cases where hν ¿ kT , i.e the tail of the
plots.

Assume that for hν ¿ kT :

ex ' 1 + x +
x2

2!
+ ...

So:

RBBν =
2hν3

c2

kT

hν
=

2kTν2

c2
(3.57)

Similarly:

RBBλ
=

2kTc

λ4
(3.58)

So Planck’s functions approximate to linear functions in temperature, T .
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Wien’s law

For a very high frequency, hν À kT , RBBν
approximates to the exponential function:

RBBν =
2hν3

c2
e−

hν
kT (3.59)

And:

RBBλ
=

2hc2

λ5
e−

hc
λkT (3.60)

3.3.3. Kirchoff’s law

Kirchoff’s law covers the emissivity of a general (non-black) body. Let us place inside
our black box at a temperature, T , a general non-black body, with an absorbtivity α,
and with the same temperature, T .

The total irradience, IBB, onto theis body will be the black body radiation, as before,
integrated over all ν or λ. The radiant power absorbed by the body per unit area will
be αIBB.

The body is also emitting radiation with a total emittence Ie, but as the body remains
at a temperature T , we can see that Ie = αIBB.

If α = 1 then this proves that radiation is emittted by a black body, butfor α 6= 1 we
have to consider a general body’s emissivity.

We define a body’s hemispherical emissivity, ε, such that it’s mittence at a temperature
T is a fraction, ε, of the emittence, IBB, of a black-body at the temperature T . So:

Ie = εIBB

Comparing with the above gives Kirchoff’s law:

ε = α

i.e. good absorbers are good emitters, and vice versa.

3.3.4. A general body’s spectral radiance

The spectral radiance, Reν , emitted by a non-black body varies with frequency, ν, and
direction, (θ, φ), such that:

Reν = εν, θ, φRBB (3.61)
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Example: To reduce it’s temperature, part of a spacecraft which is bathed in sinlight
may be coated with special white paint with, for example, ε = 0.1 in the visible part of
the spectrum, i.e. it reflects sunlight. But, with ε = 0.9 in the infra-red. This means
that it emits most of it’s radiation at ∼ 290 K.

If one converts Reν
to temperature, assuming ε = 1, the teperature, TB is called the

brightness temperature, i.e. the temperature of a black-body which gives the same
spectral emittence at the same value of ν or λ as the general body.

Equally, one can define an effective temperature, Teff, this equates the total radiance,
R, per unit area emitted over all ν or λ with an equivalent black-body temperature.

R = σT 4 = σTeff
4 (3.62)

for a black body. For a star we have luminosity, L, being:

L = 4πr2σTeff
4

3.3.5. Radiation pressure

Kinetic theory gives the gas pressure of a monatomic gas as:

P =
1
3

N

V

〈
mv2

〉
(3.63)

Or:
P =

1
3

N

V
〈pv〉 (3.64)

Where p is momentum.

The same result is applicable to a gas of photons, but:

〈pv〉 = 〈pc〉 = 〈hν〉 (3.65)

So we have:
N

V
〈pν〉 = U(T ) (3.66)

Where U(T ) is the total energy density at a temperature T .

And we also have:

U(T ) =
∫

U(ν)dν =
(

4σ

c

)
T 4 (3.67)

So the black-body radiation pressure is:

Prad =
U(T )

3
=

(
4σ

3c

)
T 4 (3.68)
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Note: This can also be derived using:

P = −
(

dF

dV

)

T

Which we derived earlier. With the Helmholtz free energy, F = −kT ln(z).

3.4. Astronomical examples involving black bodies

3.4.1. Stellar temperatures

• A star’s emergent radiation approximates that of a black-body whose tempera-
ture is the brightness temperature of the outer layers of the star.

• We can also define a star’s colour temperature, Tc, by measuring the emergent
intensities in two or more spectral bands (at specific wavelengths, λi) and using
the ratio between the two intensities to give the temperature of a black body.

• As noted before we can define an effective temperature, Teff, for a star to be
the temperature of a black-body which gives the same observed total emergent
intensity from the star integrated over all wavelengths, λ.

L? = 4πR?
2σTeff

4

3.4.2. Planetary temperatures

A planet’s equilibrium temperature, Te, is such that absorbed radiation from the
sun is balanced by the emmision of thermal radiation.

3.4.3. Cosmic Microwave Background

Precision measurements of the cosmic microwave background radiation2 show that
it is well fitted with a temperature TBB = 2.735.... K with a typical deviation of
∆T
T . 10−6.

3.5. A perfect gas of bosons at low temperatures
(Bose-Einstein condensation)

3.5.1. The density of states, g(E), for matter waves in a box

First of all, we rewrite g(E) in a form that is applicable not to energy waves, but
to matter waves. Consider a closed box of a volume, V , in thermal equilibrium and
containing a gas of weakly interacting bosons.

2With COBE, WMAP, et al.
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The solution of Schrödinger’s time-independent wave equation for particle matter
waves in a box gives solutions which are standing waves with nodes at the walls of the
box. Each possible wavenumber, k, represents an energy level:

E =
h2

8π2m
k2 (3.69)

And a momentum:
p =

√
2mE =

h

2π
k (3.70)

Note: p ∝ k For each wavenumber, k, particles may have many different possible
directions.

The general analysis of the mode of waves in a box (which was described earlier) is
still valid. Thereofre, the density of states is:

g(ω)dω =
V ω2

2π2v2
dω (3.71)

Where v is the particle velocity and ω the angular frequency.

Now the waves have k = 2π
λ = ω

v , so we have:

E =
ω2h2

8π2mv2
(3.72)

ω2 =
4π22mv2E

h2
(3.73)

ω =
2π
√

2mv
√

E

h
(3.74)

dω

dE
=

π
√

2mv√
Eh

(3.75)

And the number of states in the interval dE is g(E)dE ≡ g(ω)dω so:

g(E) = g(ω)
dω

dE
=

V

2π2v3
ω2 dω

dE
(3.76)

We shall use this result again for electrons in a box.

Note: g(E) ∝ E
1
2 and also g(E) ∝ V so we get more states per unit energy in larger

boxes.
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The mean number of particles per state, fBE(E)

Using Bose-Einstein statistics:

fBE(E) =
1

eβ(E−µ) − 1
(3.77)

If there are N particles (with m 6= 0):

N =
∑

i

1
eβ(E−µ) − 1

(3.78)

Now, if N is the total number of particles in the box:

N =
∫

n(E)dE (3.79)

Where n(E) = f(E)g(E).

So:
N =

∫
f(E)g(E)dE

∴ N =
(

V

4π2

)(
2m

~2

) 3
2

∫ ∞

0

E
1
2

eβ(E−µ) − 1
dE

(3.80)

For a Bose-Einstein gas3 µ < 0. If we keep N and V constant and vary T , we get that:

N

V
=

(
1

4π2

)(
2m

~2

) 3
2

∫ ∞

0

E
1
2

e
(E−µ)

kT − 1
dE (3.81)

The integral is a function of µ
kT so |µ| must decrease as the temperature, T , decreases

for this equation to be valid.At some minimum temperature, T = Tc, we have µ = 0.

N

V
=

(
1

4π2

)(
2m

~2

) 3
2

∫ ∞

0

E
1
2

e
E

kTc − 1
dE (3.82)

Now perform a change of variable:

z =
E

kTc
dz =

1
kTc

dE

∫ ∞

0

z
1
2

ez − 1
dz (3.83)

N

V
= (2.61)

(
2πmkTc

~2

) 3
2

(3.84)

3This is necessary for the series to converge in the grand partition function (see the extra notes on
the course web site for more information).
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This implies that the Bose-Einstein gas cannot be cooled at a constant density below
the temperature Tc. What has gone wrong? The problem is in going from the sum to
the integral.

g(E) ∝ E
1
2

So g(0) = 0, but as the temperature is lowered the Bose-Einstein gas has a larger and
larger occupation of the ground state. This is completely neglected in the integral. So,
we write:

N =
(

1
e−βE − 1

)(
V

4π2

)(
2m

~2

) 3
2

∫ ∞

0

E
1
2

eβ(E−µ) − 1
dE (3.85)

Where the 1
e−βE−1

term is the number of particles with an energy E = 0 and the other
term is the number of particles with an energy E > 0.

For T > Tc:

• The number of particles in the ground state E = 0 is ∼ 0.

• The chemical potential can be determined from the integral.

For T < Tc:

• µ ∼ 0 (Although it must be slightly more than 0 for convergence.)

• The number of particles with energy E > 0 is:

(
V

4π

) (
2m

~2

) 3
2

∫ ∞

0

E
1
2

eβE − 1
dE (3.86)

Integrating gives the number of particles in states with E > 0:

NE>0 = N

(
T

Tc

) 3
2

(3.87)

So the number of particles in the E = 0 state is:

NE=0 = N

[
1−

(
T

Tc

) 3
2
]

(3.88)

This is Bose-Einstein condensation of particles in the zero energy ground state, below
Tc. The particles with E = 0 and p = 0 have no viscosity4. Does this really happen?
Yes, in 4He, the nuclei are bosons. 4He stays in the liquid state down to T ' 0 at
normal pressures, becoming a superfluid with very high thermal conductivity.

4Since this is due to the transport of momentum.
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3.6. Fermions (Electrons in white dwarf stars and in
metals)

Remember that fermions obey the Pauli exclusion principle and Fermi-Dirac statis-
tics, i.e. the occupation numbers, nr, are restricted to nr = 0, 1 only for all r.

Electrons in a box

These conditions are approximated by electrons in a white dwarf star and electrons
in a metal5.

As before, we have:
n(E) = g(E)f(E)

We can find fFD(E), the number of particles per state for fermions, to be:

fFD(E) =
1

eβ(E−µ) + 1
(3.89)

Where, at T = 0, µ = Ef , the Fermi energy.

Finding the density of states g(E)

Note that the electrons have two possible spin states, ±~2 , so the number of modes
will be twice that calculated before in the general case. Hence:

g(ω)dω =
V ω2

π2v3
(3.90)

And:

g(E) =
(

4πV

h3

)
(2m)

3
2 E

1
2 (3.91)

So the number of particles per unit energy at an energy E is:

n(E) = f(E)g(E)

n(E) =
(

4πV

h3

)
(2m)

3
2 E

1
2

(
1

eβ(E−µ) + 1

)
(3.92)

Normalisation and the Fermi energy

We normalise the distribution of energy, n(E), so that:
∫ ∞

0

n(E)dE = N

5The “free” conduction electrons.
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Where N is the total number of electrons.

This will define the constant µ, the chemical potential, as.

N =
4πV

h3
(2m)

3
2

∫ ∞

0

E
1
2 dE

eβ(E−µ) + 1
(3.93)

Where at a given temperature T = 1
βk , µ = µ(T, V, N).

First of all we normalise at T = 0. This is easier since we know that:

fFD(E) = 1 for E < Ef

The Fermi energy, Ef is defined as the value of µ for T = 0, so Ef is the maximum elec-
tron energy at a temperature of absolute zero. We then define the Fermi temperature
by:

Ef = kTf (3.94)

And the equivalent velocity and momentum:

vf =
(

2Ef

m

) 1
2

(3.95a)

pf = (2mEf )
1
2 (3.95b)

We have:

N =
∫ Ef

0

g(E)dE =
8πV

3h3
(2m)

3
2 Ef

3
2

Ef =
(

h2

2m

)(
3N

8πV

) 2
3

(3.96)

Note: The Fermi energy depends on the number density , N
V , and the particle mass,

m.

Degenerate Fermi gases

A Fermi gas at a temperature T = 0 is called completely degenerate since all states
in each energy level are full. At T ¿ Tf the distribution is not very different from the
T = 0 case, and the gas is called extremely degenerate. This is the case with metals
at all usual temperatures.
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The chemical potential, µ

So µ varies with temperature, but in extremely degenerate cases the variation is
weak.

µ(T ) ∼ Ef

[
1− π2

12

(
T

Tf

)2
]

(3.97)

For T
Tf

= 0.1, the change in µ is only ∼ 1%.

Therefore we have high electron energies even at low temperatures. Electron energies
can be quite high even at T = 0 due to the Pauli uncertainty principle forcing electrons
up into higher energy levels.

At T = 0 then the system is in a state of lowest energy, but not all electrons can crowd
into the lowest energy levels - we can only have one particle per state. Hence, the first
N lowest single particle states are filles, the states above these are empty. The Fermi
energy is, therefore, the energy of the top most occupied level at T = 0.

The properties of metals

The theory of free electrons in metals is very powerful (it explains the conduction
of heat, electrical conduction etc.). For electrons in a metal N

V is given by the atomic
spacing, typically N

V ∼ 5 × 1028 m−3. With one conduction electron per atom this
gives that Ef ∼ 5 eV, Tf ∼ 5× 104 K and vf ∼ 106 m s−1.

3.6.1. Pressure due to a degenerate Fermion gas of electrons

Remember, from the kinetic theory of a perfect gas, that:

P =
1
3

N

V

〈
mv2

〉

=
2
3

N

V

〈
mv2

2

〉 (3.98)

Or:
P =

1
3

N

V
〈pv〉 (3.99)

For a completely degenerate gas we know that f(E) = 1 and the number of particles
per unit energy at an energy E is:

n(E) =
4πV

h3
(2m)

3
2 E

1
2 (3.100)

For 0 6 E 6 Ef .
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But the momentum p is:
p = (2mE)

1
2

So:

E =
p2

2m
(3.101a)

dE

dp
=

p

m
(3.101b)

So the number of particles from E → E + dE is:

n(E)dE = n(p)dp (3.102a)

n(p) = n(E)
dE

dp

n(p) =
8πV p2

h3
(3.102b)

Where 0 6 p 6 pf .

Now:
〈pv〉 =

1
N

∫ pf

0

n(p)pvdp (3.103)

Manipulating the above gives the electron pressure:

Pe =
1
3

∫ pf

0

8πp2

h3
pvdp (3.104)

For the non-relativistic case:
v =

p

m
(3.105)

So:

Pe =
(

8π

15mh3

)
pf

5 (3.106)

For the relativistic case, v ∼ c so:

Pe =
2πc

3h3
pf

4 (3.107)

This holds for other fermions as well as electrons.
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Electron pressure in white dwarf stars

In the centre of stars we have gravitational compression so N
V is very high. Therefore,

Ef and Tf are very high. So even at high temperatures, T ¿ Tf , and degenerate
conditions exist.

For white dwarf stars most of the star is degenerate. So for protons with m ∼ 2000me,
for the same values of N

V , Ef and Pf (in the non-relativistic case) are both proportional
to 1

m and are about 2000 times smaller.

So, in a compact star mnany more electrons have high velocities compared to neutrons
and protons and hence the electron pressure is a lot higher. So the majority of gas
pressure in the star is due to the electrons.

So the more compact the star, the higher the electron Fermi energy, and also the higher
the electron pressure. So we can get a very compact yet stable star where the high
gravitational pressure is balanced by the equally high degenerate electron pressure.

White dwarfs have a radius r ∼ 104 km and are the end states of with an initial
main sequence mass of 6 7 solar masses. The are essentially the expose inert core of
the star supported by the degenerate electron pressure, with an effective temperature
Teff ∼ 105 K. The radiation of heat means that by energy loss they turn into a black
dwarf after a period of ∼ 109 years.

3.6.2. Pressure due to a degenerate electron gas in a white dwarf

From the Fermi energy and the electron pressure:

(
h2

2m

)(
3N

8mV

) 2
3

(3.108)

Where the Fermi momentum pf = (2mEf )
1
2 , therefore:

Pe =
(

8π

15mh3

)
h5

(
3
8π

) 5
3

(
N

V

) 5
3

=
(

h2

20m

)(
3
π

) 2
3

(
N

V

) 5
3

(3.109)

But N
V ≡ p

m , for this type of gas, so:

Ne

V
=

p

mpµe
(3.110)
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With µe = A
Z = atomic mass

atomic number , the mean molecular weight.

With µe = 2:

pe =
(

h2

20m

)(
3
π

) 2
3

(
1

2mp

)
P

5
3 (3.111)

In a stable white dwarf the pressure is balanced by the inward gravitational foprce so
the system is in hydrostatic equilibrium. The hydrostatic equilibrium relationship is:6

dP

dr
= −GM(r)

r2
ρ(r) (3.112)

Using approximate expressions for the mean density and pressure:

ρ̄ ' 3M

4πR3
(3.113)

And:
P̄ ' GMρ

R

' 3GM2

4πR4

(3.114)

Now:
M2

R4
∝

(
M

V

) 5
3

∝
(

M

R3

) 5
3

(3.115)

So:
M

1
3 ∝ 1

R
(3.116)

So the more massive the white dwarf the smaller it is (i.e. it has a higher density),
with the limit that Pe increases as M increases until moving to the region where the
relativistic degeneracy is important.

Pe ∝ ē
4
3 (3.117)

Or:
M2

R4
∝

(
M

R3

) 4
3

(3.118)

i.e. M
2
3 is constant ∼ 5.80M¯

µe
2 ∼ 1.45M¯. M is independant of R.

This is known as the characteristic mass limit for a stable white dwarf star. A typical
white dwarf has the following characteristics:

6Usually in the normal state the gravitational pressure is balanced by the gas pressure and the radial
pressure.
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M ∼ 0.7M¯
Teff ∼ 3× 104 K

R ∼ 1× 10−2R¯
ρ̄ ∼ 109 kg m−3

A white dwarf can have a very thin, non-degenerate atmosphere with aa thickness of
∼ 5× 103 m.

White dwarfs in binary systems - novae

Note that the electron pressure is independent of the temperature. A white dwarf
in a binary system with a red giant companion draws material from the red giant ,
so there is a mass outflow from the red giant.This material is accreted by the white
dwarf in a very high gravitational potential. The hydrogen rich accreting gas is heated
so that nuclear burning can occur. Note that at the surface of the white dwarf the
conditions are still degenerate. At T ∼ 107 K the CNO cycle of H-burning has a rate
proportional to T 17. As burning occurs the temperature increases, as does the rate
of burning along with it. The pressure throughout this stays constant. This causes a
thermonuclear runaway, which is halted at T À Tf , the degeneracy is therefore lifted,
this leads to a nova with ∼ 10−5M¯ ejected at a velocity ∼ 3− 4× 105 m s−1.

3.6.3. Neutron stars

Nautron stars have a mass of ∼ 7 − 10M¯ and a final mass of ∼ 1.4M¯. The
degenerate electron pressure cannot hold off the gravitation pressure and the core
collapses, leading to very high densities. Inverse beta-decay occurs:

p + e− → n + νe (3.119)

i.e. a degenerate fermion gas of neutrinos is formed. The neutron star as the following
typical characteristics:

M ∼ 1.5Modot

R ∼ 104 m
ρ ∼ 1018 kg m−3

vescape ∼ 0.8c

The structure of the neutron star is further complicated by two effects:

• The equation of state needed for matter at and above nuclear density must have
the strong interaction included in it.

• The high gravitational field means relativity is important.

No simple equation of state exists. As an estimate P ∼ 7 × 1033 N m−2, and again
M

1
3 ∝ R−1 in non-relativistic terms. The upper limit of the mass of a neutron star is

unclear, but 6 2.9M¯.
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4. Classical gases, liquids and solids

The “perfect gas” is an idealisation in which the potential energy of the interaction
between the atoms or molecules of the gas is negligible compared to their kinetic energy
of motion.

4.1. Definition of a classical gas

A classical gas is a quantal gas with the time averaged number of particles per one
particle state ¿ 1.

f(E) =
n(E)
g(E)

¿ 1

i.e. there are more states available than there are particles to fill, this occurs for a
dilute gas (e.g. the Earth’s atmosphere).

4.1.1. Finding the mean number of particles per unit momentum,
n(p)

Let us consider only the translational states (we ignore the internal motions of
atoms and molecules and only consider the translational kinetic energy of the motion
of particles, Etr).

n(p) = g(p)f(p) (4.1)

With Etr = p2

2m .

4.1.2. The mean number of particles per one particle state, f(p)

We assume that the statistics, fBE(E) ¿ 1 or fFD(E) ¿ 1, so:

1

e
(E−µ)

kT ± 1
¿ 1 (4.2)

In which case:
1

e
(E−µ)

kT ± 1
' 1

e
(E−µ)

kT

= fMB(E) (4.3)

So, we use the Maxwell-Boltzmann statistics:

fMB(Etr) =
N

ztr
e

(E−µ)
kT (4.4)
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Or, with respect to the momentum, p:

fMB(p) =
N

ztr
e

p2

2mkT (4.5)

Where ztr is the partition function for translational states.

A classical gas as a dilute quantal gas

According to quantum mechanics a particle of momentum p has associated with it
a quantum mechanical wavelength (the deBroglie wavelength).

λdB =
h

p
=

h

(2mEtr)
1
2

(4.6)

Where Etr = p2

2m , also Etr = 3
2kT .

So:

λdB =
h

(3mkT )
1
2

=
(

2π

3

) 1
2

(
h2

2πmkT

) 1
2

(4.7)

Now, to be in the classical regime:

fMB(Etr) ¿ 1

So, using the above:
N

ztr
e
−Etr

kT =
N

V

(
h2

2πmkT

) 3
2

e
−Etr

kT (4.8)

Which will be true if N
V

(
h2

2πmkT

) 3
2 ¿ 1. Now, substituting for λdB:

(
3
2π

) 3
2

(
N

V

)
λdB

3 ¿ 1

Now, the mean particle separation is d =
(

N
V

) 1
3 , so we get:

λdB
3 ¿ d3 or λdB ¿ d (4.9)

i.e. the deBroglie wavelength is a lot less than the particle separation, in which case
the wave nature of particles is not important. The particle spacing is too large for
quantum mechanical interference effects to be significant.

63



PHAS2228 : Statistical Thermodynamics Luke Pomfrey

4.1.3. The density of states, g(p)

In general we are considering particles of mass m in a box of volume V . We can use
the quantum mechanical analysis we had earlier for electrons, but ignoring the factor
of 2 for the spin states. So g(p) is just the same as for electrons before but divided by
2. So:

g(p)dp =
4πV p2

h3
dp (4.10)

Also, the translational partition function, ztr, is just:

ztr =
∑

E

g′(E)e−βEtr (4.11)

Where Etr is the translational kinetic energy. Note that it is possible to sum or
integrate of all energies or momenta.

g(p)dp gives the number of states in the range p → p + dp, or as an integral with
respect to the momentum, p:

ztr =
∫ ∞

0

4πV p2

h3
e
−βp2

2m dp (4.12)

So, using I2(a) and a = β
2m = 1

2mkT (see kinetic theory integrals in the appendix):

ztr = V

(
2πmkT

h2

) 3
2

(4.13)

Substituting this into the expression fMB(p) we get:

fMB(p) =
(

N

V

)(
h2

2πmkT

) 3
2

e
−p2

2mkT (4.14)

Now, n(p) = g(p)fMB(p), so:

n(p) =

[
4πNp2

(2πmkT )
3
2

]
e
−p2

2mkT (4.15)

Where n(p)dp is the number of particles possessing a momentum of magnitude p in
the range p → p + dp. This is the Maxwell-Boltzmann distribution.

4.2. The Maxwell speed and velocity distributions and
the energy distribution

Now we have the probability that particles possess momentum in the range p →
p + dp.

F (p)dp =
n(p)
N

dp =

[
4πp2

(2πmkT )
3
2

]
e
−p2

2mkT dp (4.16)
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Note that this is correctly normalised,
∫∞
0

F (p)dp = 1.

If we substitute for the momentum that p = mv then we obtain the Maxwell speed
distribution, i.e. the probability that a molecule will have speed v in the interval
v → v + dv.

F (v)dv = 4πv2dv
( m

2πkT

) 3
2

e
−mv2
2kT

=
4u2du√

π
e−u2 ≡ F1(u)du

(4.17)

Where u = v

(2 kT
m )

1
2
, i.e. u is the speed measured in units of

(
2kT
m

) 1
2 . The maximum

of the distribution occurs at u = 1, i.e. at a speed:

vmax =
(

2kT

m

) 1
2

(4.18)

The mean value involves integrals of the type In(a) =
∫∞
0

xne−ax2
dx (see appendix)

which allow us to find the mean speed, v̄, and the rms speed, vrms.

v̄ =
∫ ∞

0

vF (v)dv =
2√
π

vmax (4.19)

vrms =

√∫ ∞

0

v2F (v)dv =

√
3
2
vmax (4.20)

So vmax, v̄ and vrms have nearly the same values.

We can obtain the probability distribution that a molecule should have a translational
kinetic energy in the range Etr → Etr + dEtr using:

Etr =
p2

2m

With:
F (E) = F (p)

dp

dE
(4.21)

F (Etr)dEtr =
2
√

Etr√
π (kT )

3
2
dEtre

−Etr
kT (4.22)

F (Etr)dEtr =
2√
π

√
εdεe−ε ≡ F2(ε)dε (4.23)

Where ε = Etr
kT , the energy in units of kT .
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The mean kinetic energy per molecule, Etr, is:

Etr =
3
2
kT =

1
2
〈vrms〉2 (4.24)

Two factors make up the energy distribution:

1. The Boltzmann factor, e−ε.

2. The normalised density of states, g(E) ∝ ε
1
2 .

We can next consider the Maxwell velocity distribution, i.e. the probability that a
molecule possesses a velocity within the range v → v + dv, i.e. within the velocity
space volume element d3v which is situated at the velocity v. Given that the velocity
distribution must be isotropic, we can infer the valocity distribution from the speed
distribution earlier. We have that:

F (v)d3v = d3v
( m

2πkT

) 3
2

e
−mv2
2kT (4.25)

By integrating this over all directions of v but keeping its magnitude in the range
v → v + dv we recover the previous form F (v)dv.

The probability distribution for each cartesian component of the vector v can be ob-
tained by noting that the above equation factorises into 3 identical distributions for
each comionent. By writing:

v2 = vx
2 + vy

2 + vz
2

And noting that:
d3v = dvxdvydvz

Then we get, for say the x-component:

F (vx)dvx

( m

2πkT

) 1
2

e
−mvx

2

2kT (4.26)

We can also write:
F (vx)dx =

1√
2π

dwe
−w2

2 ≡ F3(w)dw (4.27)

Where w = vx

( kT
m )

1
2
, the velocity component in terms of

(
kT
m

) 1
2 .

The rms value of vx is given by:

(vx)rms =
(

kT

m

) 1
2

(4.28)

Which agrees with the rms speed since:

vx
2 = vy

2 = vz
2 =

1
3
v2 (4.29)
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4.2.1. The energy of a classical gas

The thermal energy E of a gas can be considered to have two components:

E = Etr + Eint (4.30)

With Etr the translational energy, and Eint the molecules internal energy (rotational,
vibrational etc. etc.).

The perfect gas law or equation of state

PV = nRT = NkT (4.31)

Can we derive this from our statistical definitions of the classical gas?

Remember that pressure:

P = −
(

df

dV

)

T,N

(4.32)

With f , the Helmholtz free energy.

f = −kT ln(z)

We had for one particle that:

z(T, V, N = 1) =
∑

r

e−βEr (4.33)

Now, since we have that:
E = Etr + Eint

We find:
z(T, V,N = 1) = ztrzint (4.34)

Note that ztr does not depend on the internal structure of the molecule and, thereofre,
is the same for any perfect classical gas. zint, however, applies to one molecule and
hence is independant of volume.

Now, since:
fMB(p) ¿ 1

In a classical gas, then most single particle states are empty, and:

z(T, V, N) =
1

N !
[z(T, V, N = 1)]N (4.35)

Therefore:

z(T, V,N) =
1

N !
V N

(
2πmkT

h2

)N
2

zint(T )N (4.36)
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Using Stirling’s formula for large N :

ln(N !) = N ln(N)−N = N [ln(N)− 1]
= N [ln(N)− ln(e)]

= N

[
ln

(
N

e

)] (4.37)

The Helmholtz free energy is then:

f = −kT ln(z)

= −kT

{
− ln(N !) + N ln(v) + N ln

[(
2πmkT

h2

) 3
2
]

+ N ln(zint(T ))

}
(4.38)

So:

f = −NkT ln

[(
eV

N

)(
2πmkT

h2

) 3
2

zint(T )

]
(4.39)

Note that f ∝ N and depends on the density, N
V . The Helmoholtz free energy, f ,

divides into two contributions from the translational and internal degrees of freedom:

f = ftr + fint (4.40)

Where:

ftr(T, V,N) = −NkT ln

[(
eV

V

)(
2πmkT

h2

) 3
2
]

(4.41)

fint = −NkT ln [zint(T )] (4.42)

The equation of state is:

P = −
(

df

dV

)

T,N

So, thereofre:

ftr(T, V, N) = −NkT

{
ln(V ) + ln

[( e

N

) (
2πmkT

h2

) 3
2
]}

(4.43)

fint is independant of volume so:
(

dfint

dV

)

T,N

= 0

So: (
df

dV

)

T,N

=
(

dftr

dV

)

T,N

=
−NkT

V
(4.44)

So:
PV = NkT ¤ (4.45)

Note that this doesn’t depend on the internal molecular structure and so the thermo-
dynamic and the perfect gas temperature scales are identical.
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Energy is only a function of temperature, E(T )

This is the other characteristic of a perfect gas. Energy, E, is not dependant on
pressure or volume, but only on the temperature. (From the first law of thermody-
namics.)

Now:

E = −
(

δ ln(z)
δβ

)

V,N

With β = 1
kT , and ln(z) = −f

kT , so:

ln(z) = N ln

[(
eV

N

)(
2πm

h2

) 3
2

β
−3
2

]
+ N ln [zint(T )] (4.46)

E = −
(

δ ln(z)
δβ

)

V,N

=
3N

2β
−N

δ{ln[zint(T )]}
δβ

(4.47)

Or:
E = Etr + Eint

Where:

Etr =
(

3
2
kT

)
N (4.48a)

Eint = −N
δ{ln[zint(T )]}

δβ
(4.48b)

Note that both Etr and Eint are functions of temperature alone. So therefore, the total
energy is only a function of the temperature, as required.

4.3. The equipartition of energy and heat capacities

The translational kinetic energy per particle is:

Etr =
{

mv2

2

}
=

3
2
kT (4.49)

So the total translational energy for N particles is:

Etr = N

(
3
2
kT

)
=

3
2
PV

For monatomic gases1:
Eint = 0

1This is not strictly true but is a good approximation
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So:
E = Etr =

3
2
PV

For molecular gases:
PV = NkT

Since the pressure is only caused by translational motion of particles but:

Eint 6= 0

So although:

Etr =
3
2
PV

E 6= 3
2
PV

In general:

E =
PV

(γ − 1)

Where γ = cP

cV
, the ratio of heat capacities.

Classically each internal degree of freedom of a gas molecule is associated with a certian
average thermal energy.

• 1
2kT for each translational component, (i.e. Etr = N

(
3
2kT

)
).

• 1
2kT for each allowed rotational axis, (2 rotational axes means that Eintr =
N(kT ), for 3 rotational axes Eintr = N

(
3
2kT

)
).

• kT for each allowed vibrational axis, ( 1
2kT for kinetic energy, 1

2kT for potential
energy).

Classically all of these contribute to the total energy and the heat capacity. In quantum
mechanics some do not since not all of these states are excited.

Now the heat capacity per mole at a constant volume, for a perfect gas is:

cV =
(

dE

dT

)

V

=
(

dEtr

dT

)

V

+
(

dEint

dT

)

V

= cVtr + cVint

(4.50)

So:

cVtr =
(

dEtr

dT

)

V

=
3
2
kN0 =

3
2
R (4.51)

i.e. independant of the temperature.
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For a monatomic gas

Experimentally cP = 5
2R, but for a perfect gas:

cP = cV + R

Hence:
cV

R
=

1
γ − 1

γ =
cp

cV

So:
cV =

3
2
R = cVtr

Therefore:
cVint = 0

Which inplies that:
Eint = 0

And:
γ =

5
3

As expected there is no rotational energy, no vibrational energy, and no electronic
excitation (at normal temperatures, there is of course at high temperatures), so:

Eint = Eintr + Eintv + Eintel = 0 (4.52)

For a molecular gas

The rotational states are generally fully excited for a molecular gas (at normal
temperatures), so they give a full classical contribution to the heat capacity, cV .

• For a linear molecule there are 2 rotational axes, therefore there are 2 degrees of
freedom, so cVintr

= R

• Non-linear molecules have 3 rotational axes so cVintr
= 3

2R

Vibrational states are not fully excited (at normal temperatures), the contribution
depends on the molecule and the temperature. At low temperatures we can ignore the
vibrational contribution to energy, cVintv

= 0 and cVintel
= 0.

cV = cVtr + cVintr
(4.53)

4.4. Isothermal atmospheres

Molecules in a gas have a distribution of velocities, therefore, some can reach greater
heights heights than other and density decreases with altitude.
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Escape velocity

Consider a molecule of mass m, at a distance r from the centre of a planet with
mass M . It moves in a gravitational field with an energy E = Ekinetic + Epotential.

E =
1
2
mv2 +

(
−GmM

r

)
(4.54)

With G being the gravitational constant.

The molecule can just escape when E = 0 and v = vesc, the escape velocity.

vesc =

√
2GM

r
(4.55)

vesc ' 11300 m s−1 for Earth.

The rms velocity is (from the Maxwell distribution):

vrms =

√
3kT

m

For the Earth, with T = 300 K we have, for Hydrogen vrms(H2) ' 2000 m s−1 and
for Nitrogen vrms(N2) ' 500 m s−1. This is less than escape velocity so most gases
don’t escape much, however some molecules will have velocities greater than the escape
velocity due to the shape of the Maxwell distribution.

If g is constant (i.e. the atmosphere thickness is a lot less than the radius of the planet)
the molecules maximum height h is given by:

mv2

2
= mgh (4.56)

Most of the Earth’s atmosphere is below ∼ 13 km.

4.4.1. Density vs. height for an isothermal atmosphere

We will derive the density as a function of height for an isothermal atmosphere2

For a perfect gas:
PV = NkT P = nkT

With n = N
V .

So P ∝ n, the number density. Pressure is the result of bombardment by molecules,

2This is an idealisation, atmosphere’s are not isothermal.
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so therefore pressure, P , and density, n, fall with height.

Consider the forces on a unit area, i.e. the pressure, at altitudes h and h + dh. We
have a pressure P at h and a pressure P + dP at h + dh. Note that the pressures
upwards and downwards are equal at all altitudes. We now make the assumption that
the ndh molecules in the height increment dh produce a net downward force on the
lower area, which is their weight mg(ndh). This is equal to the increment dP which
occurs in the atmospheric pressure, so:

dP = −mg(ndh)
dP

dh
= −mgn

P = nkT
dP

dn
= kT

Therefore:
dn

dh
=
−mgn

kT
(4.57a)

dn

n
=
−mg

kT
dh (4.57b)

n = n0e
−mgh

kT (4.58)

With n0 being the density at h = 0.

This means that:
P = P0e

−mgh
kT (4.59)

And the scale height is defined as:

H =
kT

mg
(4.60)

This is the height interval for which n or P are reduced by a factor of e (∼ 37%). This
gives:

n = n0e
−h
H (4.61a)

P = P0e
−h
H (4.61b)

For the Earth, if the Earth’s atmosphere was isothermal at a temperature T = 290 K,
the scale height would be H ∼ 8.5 km.

4.4.2. The Boltzmann law

In general:
P (Ep) ∝ e

−Ep
kT (4.62)

Where Ep is the potential energy per atom, and P (Ep) is the probability density.
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4.4.3. Van der Waals equation of state for real gases
[
P +

(
N2a

V 2

)]
(V −Nb) = NkT (4.63)

Where the N2a
V 2 term allows for the real interactions between particles (causing an

increase in pressure), and the Nb term allows for the finite size of the particles (causing
a decrease in volume).

Looking at P -V isotherms we see that for:

• T ¿ Tc this is similar to a real gas.

• T > Tc this is similar to a real gas, but with a slight inflection.

• T = Tc this is defined by the gradient
(

dP
dN

)
T

= 0 and
(

d2P
dV 2

)
T

= 0.

• T < Tc the gas condenses into a liquid.

4.5. Phase changes and the Gibbs free energy

Consider an isolated system containing one substance with two phases (e.g. ice and
water, water and steam etc. etc.) as before.

E = E1 + E2

V = V1 + V2

N = N1 + N2



 E, V, N are fixed

So the entropy:

S(E, V,N,E1, V1, N1) = S1(E1, V1, N1) + S2(E2, V2, N2) (4.64)

Entropy is at a maximum at equilibrium. So now, with E1, V1, N1 as independent
variables:

dS =

[(
dS1

dE1

)

V1,N1

+
(

dS2

dE2

)

V2,N2

(
dE2

dE1

)]
dE1 (4.65)

With similar terms for dV1, and dN1. We can also use the result:

dE2

dE1
= −1

Now, we had:
dE = TdS − PdV (4.66)

For a system in which the number of particles was fixed (i.e. a one component system).
How is this modified if N is variable? Consider now S = S(E, V, N):

dS =
(

dS

dE

)

V,N

dE +
(

dS

dV

)

E,N

dV +
(

dS

dN

)

E,V

dN
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dS =
dE

T
+

PdV

T
− µdN

T
(4.67)

So:
dE = TdS − PdV + µdN (4.68)

The Helmholtz free energy is defined as:

f = E − TS

And the Gibbs free energy as:

G = E + PV − TS (4.69)

So:
df = −SdT − PdV + µdN (4.70a)

dG = −SdT + V dP + µdN (4.70b)

So µ can be found from:

µ =
(

df

dN

)

T,V

(4.71a)

µ =
(

dG

dN

)

P,V

(4.71b)

dS is given by:

dS =

[(
dS1

dE1

)

V1,N1

−
(

dS2

dE2

)

V2,N2

]
dE1

+

[(
dS1

dV1

)

E1,N1

−
(

dS2

dV2

)

E2,N2

]
dV1

+

[(
dS1

dN1

)

E1,V1

−
(

dS2

dN2

)

E2,V2

]
dN1

(4.72)

With dS = 0 at a maximum.

Since E1, V1, N1 are all independent, then each square bracket term must be zero, so
two phases have equal temperatures and:

(
dS1

dE1

)

V1,N1

=
(

dS2

dE2

)

V2,N2

(4.73)

Equal pressures and: (
dS1

dV1

)

E1,N1

=
(

dS2

dV2

)

E2,N2

(4.74)

Equal µ and: (
dS1

dN1

)

E1,V1

=
(

dS2

dN2

)

E2,V2

(4.75)
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For a single one component phase:

µ =
(

dG

dN

)

T,P

So therefore, µ is the increase of the Gibbs free energy caused by the addition of a
particle (i.e. the Gibbs free energy per particle), so:

G(T, P,N) ∝ N

Which means that:
G(T, P, N) = Ng(T, P ) (4.76)

Where g(T, P ) is the Gibbs free energy per particle, so:

µ = g(T, P ) (4.77)

Note that this is generally not valid, it is only for a one component phase. If the
system consists of one component in two phases the equilibrium condition then is that
µ1 = µ2, which becomes g1(T, P ) = g2(T, P ).

The equilibrium line is where g1− = g2 and on this line there is only one free variable,
i.e. for a given temperature the pressure is defined etc. This leads to the 3-phase
diagram. If three phases of a one component system are in equilibrium this defines
the triple point in the T -P phase diagram.

4.5.1. The Clausius equation

The points A and B are on the equilibrium curve so at A:

g1(T, P ) = g2(T, P )

And at B:
g1(T + dT, P + dP ) = g2(T + dT, P + dP )

Now:

g1(T + dT, P + dP ) = g1(T, P ) +
(

dg1

dT

)

P

dT +
(

dg1

dP

)

T

dP (4.78)

And similar for g2. So, by subtraction:
(

dg1

dT

)

P

dT +
(

dg1

dP

)

T

dP =
(

dg2

dT

)

P

dT +
(

dg2

dP

)

T

dP (4.79)

Therefore:

dP

dT
= −

[(
dg1
dT

)
P
−

(
dg2
dT

)
P

]

[(
dg1
dP

)
T
−

(
dg2
dP

)
T

] (4.80)
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Now recall that:

dg1 = −SidT + VidP + µidN [i = 1, 2]

And for a one component phase:

gi = NiGi [Ni fixed]

So:
Nidgi = −SidT + VidP (4.81)

(
dgi

dT

)

P

=
−Si

Ni
(4.82a)

(
dgi

dP

)

T

=
Vi

Ni
(4.82b)

So the phase equilibrium curve is:

dT

dP
=

[
S2
N2
− S1

N1

]
[

V2
N2
− V1

N1

] =
∆S

∆V
(4.83)

The Latent heat, L = T∆S, so:

dT

dP
=

∆S

∆V
=

L

T∆V
(4.84)

This is the Clausius equation.

The phase diagram for water is unusual because ice contracts on melting. ∆V < 0,
but ∆S > 0 so dP

dT is negative. Increasing the pressure reduces the melting point.

Transitions with ∆S, ∆V 6= 0 are first order. All solid/liquid/gas transitions are first
order but there are some transitions with ∆S, ∆V = 0 which are second or third order.

END
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Combinations and Stirling’s formula

The number of ways of choosing n items out of a total of N is:

Ω(n) =
(

n
N

)
=

N !
n!(N − n)!

(0.1)

Stirling’s Formula for the factorial function for n À 1:

ln(n!) = n ln(n)− n (0.2)

Revision note on partial derivatives

If f is a function of variable u, and u is a function of variable x then (chain rule):

df

dx
=

df

du

du

dx
(0.3)

Supposing f = f(u) and u = u(x, y) then from definition of partial derivatives:
(

δf

δx

)

y

=
df

du

(
δu

δx

)

y

and
(

δf

δy

)

x

=
df

du

(
δu

δy

)

x

(0.4)

Taylor series

f(x + h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) + ... (0.5)

The 3-D wave equation

∇2φ(r) + k2φ(r) = 0 (0.6)

Where wave number k = 2π
λ .

Phase velocity , v, frequency, ν, and wavelength, λ, are all related by: v = λν.
Angular frequency ω = 2πν.
So, v = ω

k .

A
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Kinetic theory integrals

In kinetic theory we often have integrals of the form:

In(a) =
∫ ∞

0

xne−ax2
dx (0.7)

With a > 0. We can get a recurrence relation:

−In+2(a) =
dIn(a)

da
=

∫ ∞

0

xn(−x2)e−ax2
dx (0.8)

And we find:

I0(a) =
1
2

(π

a

) 1
2

I2(a) =
1
4a

(π

a

) 1
2

I4(a) =
3

8a2

(π

a

) 1
2

(0.9)

I1(a) =
1
2a

I3(a) =
1

2a2
I5(a) =

1
a3

(0.10)

B


