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A brief history

• Aim of Science: describe & predict evolution of
multiplicity of phenomena, including universe itself!

• Physical Systems: important subset of systems
in the universe, ranging from falling apples, rain-
drops, planets to the Universe itself !

• Dynamics: scientific study of changes/motion in
physical (and other!) systems.

One of the first exact sciences to develop.

Deals with motion of macroscopic bodies.
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Galileo (1564-1642): 1st to show with help of ex-
periments that under const force a body moves with
cons accel and not a const vel as Aristotle had be-
lieved!

Newton (1642-1727): completed laws of Mechanics;
introduced concept of mass; gave law of gravitation;
helped develop calculus!

And then came:

d’Alambert,
Euler,
Lagrange,
Poincare,
Einstein,
Kolmogorov, Smale ...

CRUCIAL POINT: SIMPLE MATHEMAT-
ICAL LAWS CAN TELL US SO MUCH
ABOUT PHENOMENA ON SUCH VAST
RANGE OF SCALES
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1 Basic concepts in dynamics

Physical phenomena in the Universe occur on
enormous ranges of scales in space and time.
Classical dynamics deals with motion and change on
common sense (intermediate) scales.

An important feature of the Universe is that laws of
dynamics obtained on earth seem applicable
to phenomena on a vast range of scales.

1.1 Frames/coordinates

To study motion one requires:

• Frame of reference (FR): i.e. a coordinate sys-
tem (an origin in space + 3 orthogonal axes) plus a
clock, in order to measure distances with time.

• Cartesian and polar coordinates: To specify
a point in 3D we need 3 coordinates: (x, y, z) in
Cartesian coordinates and (r, θ, φ) in spherical
polar coordinates.
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We often deal with motion in 1 or 2D. In 2D we
need 2 coords: (x, y) in Cartesian coordinates
and (r, θ) in polar coordinates.

In 2D the Polar and Cartesian coords are related by

x = r cos θ
y = r sin θ

The inverse transformations are given by

r =
√

x2 + y2

θ = tan−1
(

y
x

)
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2 Vectors in brief

A scalar is a quantity with magnitude only (p, q, s...)

A vector is a quantity which has both a magnitude
and a direction (represented by an underline: a, b, ...
with magnitudes |a|, |b|, ....

Two vectors are equal if they have have same mag-
nitude and direction.

A vector with magnitude but opposite direction is
written as −a

A unit vector along a given vector a (represented
by a hat) is defined as

â =
a

|a|
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Sum of 2 vectors a and b is a vector c = a + b.

2.2 Component representation

Any vector can be represented by its components.

In a Cartesian coordinate system xyz, origin at O,
let i, j, k be unit vectors along the x, y and z axes.
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Consider a vector a originating at O with coordi-
nates of its end point P = (a1, a2, a3).

Then we can represent a as

a = ia1 + ja2 + ka3

and
|a| =

(

a1
2 + a2

2 + a3
2
)1/2

2.2.1 Addition of vectors in components

Let a = ia1 + ja2 + ka3 and b = ib1 + jb2 + kb3.

The sum of the two vectors is

a + b = i(a1 + b1) + j(a2 + b2) + k(a3 + b3)

Example Let a = i + 2j − k and b = 2i + 3j + 2k.

Then a + b = 3i + 5j + k.
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2.3 Laws of vector algebra

Consider vectors a, b and c and scalars p, q. Then

a + b = b + a

p(qa) = pqa

(p + q)a = pa + qa

a + (b + c) = (a + b) + c

p(a + b) = = pa + qb

Can see geometrically!
e.g. commutative rule of addition:
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2.4.1 Scalar or dot product

for 2 vectors a and b defined as a · b = |a||b| cos θ.

Geometrically

It follows that if 2 vectors are perpendicular
then a · b = 0 since θ = π/2.

Also a · a = |a|2 and |â| · |â| = 1.

It also follows that [CHECK!]

i · i = j · j = k · k = 1

i · j = i · k = j · k = 0
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a · b =
(

ia1 + ja2 + ka3

)

·
(

ib1 + jb2 + kb3

)

= a1b1 + a2b2 + a3b3

Also for vectors a, b and scalar p we have:

a · b = b · a

(pa) · b = pa × (b)

a · (b + c) = a · b + a · c

Example: Determine whether a = 2i + j − k is
perpendicular to b = i + 3j + 5k.

Solution: check that a · b =0.

0-9

Example: Find a vector that is perpendicular to
the vector a = 2i− 3j in the xy plane. Is this vector
unique?

Solution: Let this vector have the form
b = (b1, b2, 0).

Orthogonality implies a · b = 0, which gives 2b1 −
3b3 = 0 or b1 = 3/2b2. Clearly there are infinite
such vectors!
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2.4.2 Vector or cross product

for 2 vectors a and b defined as a × b = |a||b| sin θn̂,
where n̂ is a unit vector such that a, b and n̂ form a
right handed set.

Geometrically represents the area of parallelogram

It follows that if 2 vectors are parallel then a× b = 0
since θ = 0.

Also have (for vectors a, b and scalar p)

a × b = −b × a

(pa) × b = a × (pb)

a × (b + c) = a × b + a × c
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i × i = j × j = k × k = 0

i × j = k, j × k = i, k × i = j

Hence in component form [CHECK!]

a × b =

i (a2b3 − a3b2) + j (a3b1 − a1b3) + k (a1b2 − a2b1)

=

∣

∣

∣

∣

∣

∣

i j k
a1 a2 a3

b1 b2 b3

∣

∣

∣

∣

∣

∣

Example: Find the cross product of the vectors
a = 2i + j − k and b = i + 3j + 5k.

Solution:

a × b =

∣

∣

∣

∣

∣

∣

i j k
2 1 − 1
1 3 5

∣

∣

∣

∣

∣

∣

= 8i − 11j + 5k
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Let a(t) be a vector function of variable t say.

Similar to diff of scalar functions we define

da(t)

dt
= lim

∆t→0

a(t + ∆t) − a(t)

∆t

Expressed in terms of components

a(t) = ia1(t) + ja2(t) + ka3(t)

a(t + ∆t) = ia1(t + ∆t) + ja2(t + ∆t) + ka3(t + ∆t)

Now since i, j, k are fixed vectors independent of
time, differentiating component by component gives

da(t)

dt
= i

d

dt
(a1(t)) + j

d

dt
(a2(t)) + k

d

dt
(a3(t))
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Product rules of differentiation for vectors

Let a(t) = ia1 + ja2 + ka3 and b(t) = ib1 + jb2 + kb3

Then we have the following product rule of differentiation
for vectors:

d

dt
(a · b) = a · db/dt + da/dt · b

d

dt
(a × b) = a × db/dt + da/dt × b

which can be proved by writing a · b and a × b in terms
of components. For example:

d

dt
(a · b) =

d

dt
(a1b1 + a2b2 + a3b3)

=
(

da1

dt

)

b1 + a1

(

db1

dt

)

+
(

da2

dt

)

b2

+ a2

(

db2

dt

)

+
(

da3

dt

)

b3 + a3

(

db3

dt

)

=
(

da1

dt

)

b1 +
(

da2

dt

)

b2 +
(

da3

dt

)

b3

+ a1

(

db1

dt

)

+ a2

(

db2

dt

)

+ a3

(

db3

dt

)

= a · db/dt + da/dt · b
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Similarly can prove

d

dt
(a × b) = a × db/dt + da/dt × b

by writing a × b in terms of components.

Example: A vector has constant magnitude but a
direction that varies with time. Show that its deriva-
tive is always perpendicular to itself.

Solution: Let the vector be c.

We know c · c = |c|2 =constant.

d

dt
[c · c] = 0 = c ·

dc

dt
+

dc

dt
· c

which gives

c ·
dc

dt
= 0

and hence the result.
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For a vector function of time a(t) = ia1(t)+ ja2(t)+
ka3(t) we define the indefinite integral:

∫

a(t)dt = i

∫

a1(t)dt + j

∫

a2(t)dt + k

∫

a3(t)dt

Example Consider the vector

a(t) = 2ti + 3t2j + 4t3k

Calculate the derivative and the integral of this vec-
tor with respect to (wrt) t.

da(t)

dt
= 2i + 6tj + 12t2k

∫

a(t)dt = t2i + t3j + t4k + C

where C is a constant vector of integration.
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Let P be a particle moving relative to a Cartesian
frame of reference F . Let its coordinates at time t
be given by (x, y, z).

The vector connecting the origin to P is called the
position vector of P relative to O and represented
by r:

r = ix + jy + kz

Now as the particle moves, its coordinates change
with time and we can write

x = x(t), y = y(t), z = z(t)

and we may represent r as a vector function of time,
r = r(t).
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2.8 Velocity and acceleration

Let a particle P move on a trajectory T . Let its
position vectors at times t and (t + ∆t) be r(t) and
r(t + ∆t). The velocity of the particle relative to
the frame F is defined as

v = lim
∆t→0

r(t + ∆t) − r(t)

∆t
=

dr

dt

i.e. as the rate of change of the position vector wrt
time. In components

v =
dr

dt
=

(

i
dx

dt
+ j

dy

dt
+ k

dz

dt

)

= (ẋ, ẏ, ż)

or

v = (u, v,w) =
(

dx

dt
,
dy

dt
,
dz

dt

)

The velocity vector v is tangent to the trajectory.

Similarly the acceleration of the particle P is de-
fined as the rate of change velocity wrt t

a =
dv

dt
=

(

i
d2x

dt2
+ j

d2y

dt2
+ k

d2z

dt2

)

= (ẍ, ÿ, z̈)

or

a = (ax, ay, az) =
(

du

dt
,
dv

dt
,
dw

dt

)

≡
(

d2x

dt2
,
d2y

dt2
,
d2z

dt2

)
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Example: The position vector of a particle moving
in the xy plane is given by

r = a sinωti + a cosωtj

where a and ω are constants. Show that the particle
moves on a circular trajectory and calculate its ve-
locity and acceleration.

Solution: The components of the position vector
are x(t) = a sinωt, y(t) = a cosωt. Treating this
as parametric Eq of trajectory, can obtain Eq by
eliminating time. Squaring and adding:

x2 + y2 = a2(sin2 ωt + cos2 ωt) = a2

which is Eq of a circle of radius a centred at origin.

v =
dr

dt
= aω cosωti − aω sinωtj

a =
dv

dt
= −aω2 sinωti − aω2 cosωtj = −ω2r

which shows that acceleration is in opposite direction
to the position vector pointing towards the origin.
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Similar to unit vectors in Cartesian coords, we can
associate unit vectors to r and θ in polar coordinates,
denoted by êr and êθ. Note that unlike i, j these
unit vectors are not fixed and change with
time (or the angle θ), as the particle moves.

From the figure we see that r = rêr. Further

êr = i cos θ + j sin θ, êθ = −i sin θ + j cos θ
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To express vel & accel in terms of êr and êθ recall
that the position vector is r = rêr. Diff wrt t:

v =
dr

dt
=

d(rêr)

dt
= êr

dr

dt
+ r

dêr

dt
(1)

Using expressions from above for êr and êθ in terms
of i and j and using the chain rule we have:

dêr

dt
=

dêr

dθ

dθ

dt
=

(

−i sin θ + j cos θ
) dθ

dt
= θ̇êθ

dêθ

dt
=

dêθ

dθ

dθ

dt
=

(

−i cos θ − j sin θ
) dθ

dt
= −θ̇êr

Substituting in Eq (1):

v = ṙêr + rθ̇êθ

Similarly for the acceleration

a =
dv

dt
=

d

dt

(

ṙêr + rθ̇êθ

)

= r̈êr + ṙ
dêr

dt
+ ṙθ̇êθ + rθ̈êθ + rθ̇

dêθ

dt

= r̈êr + ṙθ̇êθ + ṙθ̇êθ + rθ̈êθ − rθ̇2êr

a =
(

r̈ − rθ̇2
)

êr +
(

2ṙθ̇ + rθ̈
)

êθ
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2.10 Line integrals

We shall have occasions to integrate vector functions
along given paths in space, in the form:

∫

C

f · dr

where r is the position vector of a point on the path.

Consider a case where the function and the position
vector are functions of time in the forms

f = f(t), r = ix(t) + jy(t) + kz(t)

The above integral can be written as

∫

C

f(t) ·
dr

dt
dt

and evaluated as usual.
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Example: Evaluate the integral
∫ q

p
f · dr , where

f = xyi + yz2j + y2zk and p and q have coordinates
(0, 0, 0) and (1, 1, 1) respectively. Calculate this in-
tegral along the path given by r = t2i + t3j + t4k.

Solution: From the expression for the path, we have
x = t2, y = t3, z = t4. Substituting for x, y, z in
terms of t in f :

f = it5 + jt11 + kt10

and recalling

dr

dt
=

d

dt

(

it2 + jt3 + kt4
)

= 2ti + 3t2j + 4t3k

Thus

f(t) ·
dr

dt
= 2t6 + 3t13 + 4t13

Now at p, t = 0 and at q, t = 1. Thus

∫ q

p

f · dr =

∫ 1

0

(

2t6 + 7t13
)

dt =
2

7
+

1

2
=

11

14
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Gradient: An important differential operator (the
dell operator), defined as

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
.

Consider a scalar function φ = φ(x, y, z). Acting
with ∇ on φ gives

∇φ = i
∂φ

∂x
+ j

∂φ

∂y
+ k

∂φ

∂z

which is a vector called the gradient of φ.

Curl: Another important operator which can act
on vector functions is that of curl defined as (∇×).
Thus the curl of the vector function

a = ia1(x, y, z) + ja2(x, y, z) + ka3(x, y, z)

is given by

∇× a =

(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

×
(

ia1 + ja2 + ka3

)
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∇× a =

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

a1 a2 a3

∣

∣

∣

∣

∣

∣

Example: Calculate the gradient of the scalar func-
tion φ = xy2z

∇φ = i
∂(xy2z)

∂x
+ j

∂(xy2z)

∂y
+ k

∂(xy2z)

∂z

= y2zi + 2xyzj + xy2k

Example: Calculate the curl of the vector function
a = xyi + sin yj + xeyk.

∇× a =

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

xy sin y xey

∣

∣

∣

∣

∣

∣

= (xey)i − (ey)j − xk
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An important identity

The curl of gradient of a scalar field is zero, i.e.

∇×∇φ = 0

To see this use the definition of curl and grad:

∇×∇φ =

∣

∣

∣

∣

∣

∣

i j k
∂

∂x
∂

∂y
∂
∂z

∂φ
∂x

∂φ
∂y

∂φ
∂z

∣

∣

∣

∣

∣

∣

=

(

∂2φ

∂y∂z
− ∂2φ

∂z∂y

)

i

+

(

∂2φ

∂z∂x
− ∂2φ

∂x∂z

)

j +

(

∂2φ

∂x∂y
− ∂2φ

∂y∂x

)

k

= 0

assuming that the scalar function is sufficiently
smooth so that the partial derivatives commute.

Thus if a = ∇φ then its curl is zero (∇ × a = 0).
In this case we say the vector field a has a scalar
potential φ associated with it.

Importantly the converse (not proved here) is also
true, i.e. if ∇× a = 0, then there exists a scalar
function (called potential) φ such that a = ∇φ.
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3 Kinematics

Study of motion without reference to forces.

Given velocity or acceleration can integrate
(once or twice) to find r. Similarly given r can
differentiate to find velocity of acceleration.

Below we consider some simple examples

3.1 Motion in 1D

In this case we can, wlog, assume motion is along
the x-axis. So we drop the underlines and have

x = x(t), v =
dx

dt
, a =

d2x

dt2

Example: A particle moving along the x-axis has
velocity v = 3t2 − 2t + 3. Calculate its initial accel-
eration (at t = 0) and its displacement when t = 2.

We are given that x = 5 when t = 1.

Diff: a = dv
dt = 6t − 2 which at t = 0 is −2.

Integrating: x =
∫

vdt = t3 − t2 +3t+ c which using
x = 5 at t = 2 gives c = 2.
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Consider motion under const accel , a, in 1D, where
at t = 0, v(0) = v0 and x(0) = x0.

Using the chain rule we have

d2x

dt2
=

dv

dt
=

dv

dx

dx

dt
= v

dv

dx
=

1

2

d

dx
(v2) = a

Integrating wrt x gives v2 = v0
2 + 2a(x − x0)

A very useful relation in obtaining acceleration if we
know initial and final velocities and distance covered.

Example: In a motor cycle race the competitors
have to start and finish at rest ten seconds after
starting. The winner is the person who has cov-
ered the greatest distance. There are 3 competitors:
Hope, Dawn and Honesty. Hope’s bike accelerates
at 2m/sec2 and decelerates at 8m/sec2, Dawn’s ac-
celerates at 3m/sec2 and decelerates at 3m/sec2 and
Honesty’s accelerates at 4m/sec2 and decelerates at
1m/sec2. Who will win the race and how far had
she/he gone in 10 seconds?
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Example: The position vector of a particle is given
by

r = b cosωti + b sinωtj + ctk

where b, c, ω are constants.

This implies that position of particle at t is given by

x = b cosωt, y = b sinωt, z = ct

Then
x2 + y2 = b2

which implies that the particles moves on a circular
cylinder with OZ as axis
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3.3 Laws of Newton

Allow calculation of how velocities/distances change
when forces are applied. Before stating these laws, we
require a number of definitions.

Inertial frames (IF): Recall that that there are an ∞
number of frames (such as accelerating ones) relative to
which motion would look different.

Newton measured motion relative to a preferred sub-
set of frames referred to as Inertial frames. These

are frames relative to which an isolated, non-rotating

unaccelerated body moves on a straight line and uni-

formly.

Newton defined such frames in terms of absolute space
(an unsatisfactory notion) which he identified with the
centre of mass of the solar system and the fixed stars.

In practice use approximate IFs, such as laboratory,
Sun/fixed stars etc. These are satisfactory as in these
cases acceleration of frame ≪ accel of interest.

Definition: For a body of mass m moving with velocity

v, the momentum is defined as mv.
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First law: Any material body continues in its state
of rest or uniform motion (in a straight line) unless
it is made to change that state by forces acting on
it. [Equivalent to statement of existence of IFs]

Second law: Force F acting on a point mass m
induces an acceleration a which is equal to the rate
of change of momentum of the mass m

F =
d(mv)

dt

which for constant m becomes,

F = m
dv

dt
= ma

= m

(

du

dt
,
dv

dt
,
dw

dt

)

= m

(

d2x

dt2
,
d2y

dt2
,
d2z

dt2

)

Note: given a force law, F , this is a 2nd order ODE

Third law: For every action there is an equal and
opposite reaction.
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Above laws together with the following assumptions,
amount to the Newtonian framework:

(i) Space and time are continuous (not discrete).
Necessary to allow the employment of calculus.

(ii) There is a universal (absolute) time, i.e. different
observers in different frames measure the same time.
[Newton also took space to be absolute, but this is
not necessary for the Newtonian framework].

(iii) Mass invariant as viewed from different IF’s.

(iv) Geometry of space is Euclidean, which for e.g.
implies that the sum of angles in any triangle equals
180 degrees.

(v) There is no limit to the accuracy with which
time, space intervals and velocity can be measured.

It turns out (ii) & (iii) are relaxed in Special
Relativity, (iv) is relaxed in General Relativ-
ity & (v) is relaxed in Quantum Mechanics.
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In order to account for prior accurate observations
of planetary orbits Newton postulated (in his book
‘Naturalis Principia Mathematica’ (”the Principia”),
1687) that the force between 2 point particles of
masses m1 and m2 a distance r apart is

F = −
Gm1m2

r2
r̂

where r̂ = r/r is a unit vector in the direction of r.
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Acceleration due to gravity near the surface
of the earth:

Consider a particle of mass m a distance h above the
surface of the earth. The force on a particle due to
the gravitational force of the Earth is

−
Gmme

r2
r̂ = −

Gmme

(Re + h)2
r̂

where me and Re are the mass and the radius of the
Earth.

If h ≪ Re (particle near earth) we can ignore h in
the denominator and the acceleration due to gravity,
g, is this force divided by m i.e.

−g = −
Gme

Re
2 r̂, g =

Gme

Re
2 = const

Thus the acceleration due to gravity near sur-
face of the Earth is well approximated by a
constant g = 9.8m/sec2.

0-34

3.6 Units and dimensions in brief

Usually use SI units.

• Length (L, meter, m),

• Time (T, second, s).

• Mass (M, kilogramme, kg)

Other quantities can be derived from these.

• Velocity ( L
T

, meter/second, m/s),

• Acceleration ( L
T2 , meter/sec squared, m/s2),

• Force (ML
T2 , kg.meter/second2, mkg/s2),

• Momentum (ML
T

, mkg/s) etc.

Some useful constants:

Speed of light: c = 3 × 108 m/s
Radius of the earth: R = 6378.1 × 103m
Mass of the Earth: Me = 5.9742 × 1024 kg
Acceleration due to gravity: g = 9.8m/s2

Universal cons of grav G= 6.67 × 10−11 m3/kgs2.

Escape velocity from Earth 11 × 103km/s
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Problem reduces to specifying the force F and solv-
ing the differential equations of motion

m
d2r

dt2
= F

which in 3D are three 2nd order ODEs.

3.7.1 Motion of particles in 1D

In this case the force is a scalar (has only 1 compo-
nent. e.g. for motion in x direction F = F (x)).

Following classes of problems can arise in 1D, de-
pending on nature of force:

1. F = cons or function of t only

2. F = F (x)

3. F = F (v)

4. F = F (x, v)

5. F = F (x, v, t)
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Simplest example that of motion under a constant
force, F , acting on a mass m which moves in direc-
tion of force (say along x-axis)

Eq. of motion: md2x
dt2 = F . Integrating twice wrt t

and using initial conditions x = x0,
dx
dt = v0 when

t = 0:

dx

dt
=

F

m
t + C

and

x =
F

2m
t2 + Ct + D

where C and D are arbitrary constants of integra-
tion. Using the initial conditions we find C = v0 and
D = x0 and the solution becomes

x =
1

2

(

F

m

)

t2 + v0t + x0
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3.7.3 Motion in 1D under gravity: F = F (r)

Consider motion of a particle of mass m thrown ver-
tically upwards near the surface of the Earth, mass
Me, radius Re.

The equation of motion in the vertical direction re-
duces to 1D motion (i.e. the radial component only):

m
d2r

dt2
= −

GMem

r2

where r is measured from the centre of the earth.

To solve multiply both sides of Eq by dr
dt

& divide by m

dr

dt

d2r

dt2
= −GMe

r2

dr

dt

Rewrite as

d

dt

(

1

2

(

dr

dt

)2
)

=
d

dt

(

GMe

r

)
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which can be easily integrated to give

(

dr

dt

)2

= v2 =
2GMe

r
+ constant

If initially at r = Re velocity is u0 then
(

v2 − u0
2
)

= 2GMe

(

1

r
− 1

Re

)

Three possibilities arise:

• If u0
2 > 2GMe

Re
then v2 is positive as r → ∞ and

the mass completely escapes from earth.

• If u2 < 2GMe

Re
the velocity v becomes zero when

r =
Re

1 − Reu2/2GMe

and the mass falls back on to earth.

• If u2 = 2GM
R

particle just escapes to ∞. This
velocity

vE =
(

2GMe

Re

)1/2

is called the critical or escape velocity (=

11km/se).
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Consider the escape velocity for a star of mass M and
radius R

vE =
(

2GM

R

)1/2

If M remains fixed but R decreases (as in the case of a
collapsing star), then the escape velocity will increase.

As R decreases there comes a time when vE becomes
equal to the velocity of light, c, i.e.

(

2GM

R

)

= c2

If the radius is decreased still further, then even light will
not be able to escape such a body. Such a body would
therefore emit no light (appear black) and is known as a
black hole.

Historically Black holes were hinted at by Laplace in
1795. He, however, assumed that light is made of parti-
cles which obey F = −Gm1m2

r2 r̂, as if they were classical
test particles. But they are not.

One would need Einstein’s theory of General Rel-

ativity to do this properly, but interestingly the

result turns out to be the same!
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Jules Verne in his book ‘A journey to the
Moon’ suggests sending people to the Moon
by placing them in a cannon ball and firing
it to the Moon.

According to him a starting velocity of ∼
16km/sec which is reduced by air drag to
∼ 11 km/sec, is quite sufficient to carry the
ball to the Moon. He assumes the length of
the barrel to be 210 m.

What are your objections to the project?

How would you modify the length of the bar-
rel to give the travellers a comfortable ride? (
the acceleration due to gravity is 9.8 m/sec2

and you may assume constant acceleration
in the barrel).
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3.7.4 Motion in 1D under a resistive force
F = F (v)

In reality motion is effected by resistive forces such as
air resistance or friction. In general such forces depend
on the magnitude of the velocity. In particular for slow
motion F (v) ∝ v and for fast motion F (v) ∝ v2. So a
good approximation for such forces is found to be F ∝
vn, where n depends on the velocity.

Example: Consider the motion of a particle along the x-
axis subject only to a resistive force F (v) = −kv, where
k is a positive const with initial velocity v = v0 at t = 0.

Eq. of motion

F = ma ≡ m
dv

dt
= −kv

Integrating
∫ v

v0

dv

v
=

∫ t

0

− k

m
dt

[ln v]vv0
=

[

− k

m
t
]t

0
=⇒ ln

v

v0
= − k

m
t

v = v0e
(− k

m
t)

Thus as t → ∞, v → 0, i.e. it takes an infinite time for

the particle to come to rest.
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Example: Consider the motion of a particle along
the x-axis subject to a constant force F plus a re-
sistive force F (v) = −kv, i.e. a total force of
F (v) = F − kv.

The Eq. of motion is:

m
d2x

dt2
≡ m

dv

dt
= F − kv

Solving for v gives

∫

dv

F − kv
=

1

m

∫

dt

v =
F

k

(

1 − Ae−
k
m

t
)

where A is a constant of integration.

Thus as opposed to the previous case, as t → ∞,
v → F/k, i.e. the velocity does not go to zero but
reaches a limiting velocity.
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Forces in this case are gravity and air resistance, which

for large speeds can be approximated by F ∝ v2

The Eq. of motion of raindrop of mass m is

m
dv

dt
= mg − kv2

where k is a constant. Separating variables we have

∫

dv

1 −
(

k
mg

)

v2
=

∫

gdt

Letting n2 = k/mg and factorising the integrand
gives

∫

dv

1 − nv
+

∫

dv

1 + nv
= 2gt + const
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1

n
ln

(

1 + nv

1 − nv

)

= 2gt + const

Rearranging gives

v =
1

n
ln

(

e2ngt − 1

e2ngt + 1

)

=
1

n
tanhngt

Thus recalling that

lim
t→∞

tanh(ngt) → 1

we find that as

t → ∞, v →
1

n

i.e. v approaches a terminal velocity v0.
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3.7.5 Motion of particles in 2D: projectiles

Consider a mass m fired at an angle θ to the horizon-
tal with velocity u0 from the surface of the Earth.

Eq of motion has 2 components, in x and y direc-
tions:

m
d2x

dt2
= 0

m
d2y

dt2
= −mg
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Initially, at t = 0, the horizontal and vertical veloci-
ties are given by

∣

∣

∣

∣

dx

dt

∣

∣

∣

∣

t=0

= u0 cos θ,

∣

∣

∣

∣

dy

dt

∣

∣

∣

∣

t=0

= u0 sin θ

Hence integrating the Eqs of motion:

x = u0 cos θt

y = u0 sin θt −
1

2
gt2

The mass returns to ground when y = 0, i.e. after
time t = 2u0 sin θ/g. The value of x at this time is
called the range, R, where

R = u0 cos θt =
2u0

2 sin θ cos θ

g
=

u0
2

g
sin 2θ

For a given initial velocity u0, the maximum value
of R is when sin 2θ = 1, i.e. θ = π/4 and the
range in u0

2/g.
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Recall the second law is a 2nd order ODE. To
solve the Eq. of motion we need to integrate twice.

Interesting information can be obtained by integrat-
ing the 2nd law once, wrt to time and x respectively.

3.8.1 Impulse and momentum

Consider a particle of mass m moving under the ac-
tion of force F .

Then according to the 2nd law: F = ma = m
dv
dt .

Integrating with respect to t:

∫ t2

t1

Fdt =

∫ t2

t1

m
dv

dt
dt (2)

=

∫ v
2

v
1

mdv = mv2 − mv1 (3)

where mv is the momentum of the particle.
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acting on a particle is zero (i.e. LHS of (2)), then
mv2 = mv1 i.e. momentum is conserved.

3.8.2 Work and Kinetic Energy

Integrating with respect to r & using chain rule

∫ r
2

r
1

F · dr = =

∫ r
2

r
1

m
dv

dt
· dr

dt
dt =

∫ r
2

r
1

m
dv

dt
· vdt

=
1

2
m

∫ v
2

v
1

d

dt
(v · v) dt =

[

1

2
m |v|2

]v
2

v
1

=
1

2
m |v2|

2 − 1

2
m |v1|

2

1
2m |v|

2
is the kinetic energy (KE) of the particle

∫ r
2

r
1

F ·dr is defined as the work done by the external

force F on the particle as it moves from r1 to r2.

Thus total work done by the force on particle
(LHS) is equal to the change in its KE (RHS).
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3.8.3 Conservative forces

In general (3D) the work done is defined as the
line integral

∫ r
2

r
1

F · dr (4)

where r is the position vector of a particle as it
moves from point r1 to r2.

Conservative forces: forces for which the work
done (4) does not depend on the path taken by the
particle as it moves from point r1 to r2.

An immediate consequence of this is that the work
done around a closed loop is zero, i.e.

∮

C

F · dr = 0, (5)

which gives a condition for force to be conservative.

The condition for the force to be conservative can
alternatively be expressed as

∇× F = 0, (6)
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i.e. that the curl of the force should be zero.

Alternatively the force could be expressible as the
gradient of a scalar potential thus

F = −∇Φ (7)

where the negative sign is chosen as a convention.

Thus each of the conditions (5), (6) and (7)
ensure that the force is conservative.

To see how these definitions are equivalent note that
recalling the identity ∇×∇Φ = 0 it is clear that (7)
would imply (6).

Also (6) implies (5) by recalling the Stokes’ theorem
according to which

∫

S

(∇× F ) · da =

∮

C

F · dr

where C is a simply connected closed path and S
is the surface enclosed by the boundary C. Thus if
∇× F = 0 then the LHS is zero which would make
the RHS zero and hence (5).
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of work above
∫ p

2

p
1

F · dr = −
∫ p

2

p
1

∇Φ · dr

−
∫ p

2

p
1

(

i
∂Φ

∂x
+ j

∂Φ

∂y
+ k

∂Φ

∂z

)

·
(

idx + jdy + kdz
)

−
∫ p

2

p
1

∂Φ

∂x
dx +

∂Φ

∂y
dy +

∂Φ

∂z
dz = −

∫ p
2

p
1

dΦ = − [Φ]
p
2

p
1

Similarly
∮

F · dr =

∮

dΦ = 0

which shows that the integrand is a total derivative
of a scalar function and therefore only dependent on
its end points and not the path, as required for a
conservative force.

To summarise: for a force F to be conserva-
tive it is sufficient for it to satisfy 1 of the
conditions:

∮

C

F · dr = 0, ∇× F = 0, or F = −∇Φ
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Theorem: Forces of type F = F (x) in one dimen-
sion are conservative.

Proof: Trivial as in 1D path is fixed and integral
in going round a closed path reduces to just going
(from point x1 to x2 say) and coming back, i.e.

∫ x2

x1

Fdx +

∫ x1

x2

Fdx = 0

which is true since
∫ x2

x1

Fdx = −
∫ x1

x2

Fdx.
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3.8.4 Potential energy

Existence of conservative forces motivates the intro-
duction of teh concept of potential energy (PE).

Let Φ be a differentiable function of (x, y, z) in Cartesian
(or of (r, θ, φ) in spherical polar) coordinates, defined s.t
the force can be expressed in terms of Φ as

F = −∇Φ

Then as was shown above
∫ p

2

p
1

F · dr = − [Φ]
p
2

p
1

Defined thus Φ is called the potential energy cor-
responding to the force F . The −ve sign is a con-
vention to signify that +Φ is the work done against
the force and not by it - like a spring that stores PE
when compressed.

In 1D we would have Φ = Φ(x) such that

F = −dΦ

dx
, and Φ = −

∫

Fdx

where the constant of integration is taken as zero
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Example: Calculate the potential in 1D corre-
sponding to the force F (x) = 2x + 3x2 + 4x3.

Φ = −

∫

F (x)dx = −x2 − x3 − x4

Remember the −ve sign & the fact that con-
stant of integration is always taken as zero.

Example: Show that the gravitational force
is conservative, with the corresponding po-
tential

Φ(r) = −
Gm1m2

r
, r ≡ |r|

Solution: To see note:

Φ(r) = −

∫

F · dr =

∫

Gm1m2

r3
r · dr.

But

r · dr =
1

2
d(r · r) =

1

2
d(r2) = rdr
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−

∫

F · dr =

∫

Gm1m2

r3
(rdr) = −

Gm1m2

r

Alternatively can show that ∇× F = 0.

∇×

(

−
Gm1m2

r3
r

)

= −Gm1m2∇×
( r

r3

)

= −Gm1m2

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

x
r3

y
r3

z
r3

∣

∣

∣

∣

∣

∣

= 0

by calculating directly using

r3 =
(

x2 + y2 + z2
)3/2

Note this shows the force is conservative but does
not give the potential!
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Equating the two expressions for the work done we
have

∫ r
2

r
1

F · dr =
1

2
m |v2|

2 − 1

2
m |v1|

2 = Φ(r1) − Φ(r2)

which implies

1

2
m |v1|

2 + Φ(r1) =
1

2
m |v2|

2 + Φ(r2)

But LHS depends on point r1 and RHS on point r2.

Now since these points are arbitrary, this is only pos-
sible if both sides are the same constant.

Thus for a conservative force we have

1

2
m |v|2 + Φ = KE + PE = E a constant (8)

E is called the total energy of the particle.

In 1D this Eq becomes

1

2
mẋ2 + Φ(x) = E, ẋ ≡

dx

dt
= u (9)
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3.8.6 Qualitative information about motion
using the energy equation: 1D case

The energy conservation law can be used to obtain
qualitative information about motion without solv-
ing the 2nd law directly.

To see consider motion along x-axis with vel u = ẋ.

The energy conservation Eq (9) can be written as

u ≡ ẋ = ±

√

2

m
(E − Φ(x)) (10)

Thus for a particle moving subject to force
whose PE is Φ(x) motion is only possible if

Φ(x) ≤ E (11)

in order to ensure that ẋ is real. Thus given a Φ(x)
(or force law F (x) - in which case Φ = −

∫

F (x)dx)
plot Φ(x) versus x and determine where motion ex-
ists (i.e. where Φ(x) ≤ E).

Note: the shape of the potential Φ(x) can tell
us a lot about nature of possible motion.
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Example: A particle moves under the action of a
conservative force whose PE function is given by the
graph below. Discuss the possible types of motion
that can occur.

Types of motion depends on size of E. For the shown
E, motion possible for x1 ≤ x ≤ x2, x > x3.
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dΦ/dx < 0 → F = −dΦ/dx > 0

i.e. it experiences a force away from the origin.

When placed at xB

F = −dΦ/dx < 0

i.e. it experiences a force towards the origin.

particle comes to rest at xA, xB.

So particle oscillates between these points!

When particle at x > x3 force away from origin and
particle accelerates to +∞

If particle placed at x > x3 and fired towards origin
with energy E, it slows down as it moves towards
x3, stops there and rolls back to +∞ again.

Now change E and repeat analysis.
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Important for further understanding the dynamics.

Points of equilibrium defined as points at which

dΦ(x)

dx
= 0

i.e. the turning points of the potential function.

Point of stable equilibrium: point at which Φ(x)

is a minimum (i.e. dΦ/dx = 0, d2Φ/dx2 > 0).

Stable as motion in their nbhd is oscillatory: small
displacements do not results in large divergences.

Point of unstable equilibrium: point at which

Φ(x) is a maximum (i.e. dΦ/dx = 0, d2Φ/dx2 < 0).

Unstable as small displacements do results in large
divergences.
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Steps to follow in doing problems

• Given a force law F (x), use Φ = −
∫

F (x)dx
to calculate the potential.

• Find points of equilibrium of potential, deter-
mining whether they are stable or unstable.

• Plot the potential Φ(x) vs x

• Take different values of energy E to cover all
qualitative types of motion that can occur. To
decide which values of E to take, look at the
shape of the potential.
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Example: A particle of unit mass moves along the
x-axis under the influence of a force whose magni-
tude is given by

f(x) = −8x + 2x3.

(a) Find an expression for the potential energy Φ(x).
(You may assume Φ(0) = 0 for simplicity.)

(b) Find the points of equilibrium and determine
the stability of each.

(c) Sketch Φ(x) as a function of x and discuss briefly
the possible types of motion that can occur depend-
ing upon the total energy of the particle.

(d) The particle is placed at the position of stable
equilibrium and given a velocity of magnitude u0 in
the positive x direction. Find u0 such the particle
cannot escape to +∞. For what values of u0 will the
particle oscillate about the origin?

0-63



4 Motion near a point of stable
equilibrium: SHM

We have seen from qualitative analysis that such a
motion is oscillatory. Here make this quantitative.

Consider a particle of mass m moving under the ac-
tion of a force whose PE is Φ(x).

Without loss of generality choose coordinates such
that pt of stable equilibrium of Φ is at origin x = 0.

Place the particle at the origin and displace it a little
(give it a small KE).

To write Eq. of motion obtain force from

F (x) = −
dΦ(x)

dx
(12)

Since we are interested in motion in nhbhs of origin,
use Maclaurin’s series to expand Φ(x):

Φ(x) = Φ(0) +
x

1!
Φ

′

(0) +
x2

2!
Φ

′′

(0) + ....O(x3)
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ignore terms of O(x3).

Recall also that Φ(x) passes through the origin (i.e.
Φ(0) = 0) and the origin is a point of stable equilib-
rium (i.e. Φ

′

(0) = 0).

Substituting gives

Φ(x) =
x2

2!
Φ

′′

(0)

Letting Φ
′′

(0) = k > 0 we have

Φ(x) = k
x2

2!

Now using (12) we obtain F = −kx and the Eq. of
motion (F = mẍ) becomes

mẍ + kx = 0

This is the equation of simple harmonic motion
(SHM).
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This is a linear homogeneous ODE for which the
general solution is of the form [CHECK!]

x = aeiωt + be−iωt, ω2 =
k

m

where a and b are are arbitrary constants to be specified
by ICs. But x is positive distance and cannot take imag-
inary values. Therefore the arbitrary constants need to
be chosen as complex conjugates thus

a =
1

2
(A − iB), b =

1

2
(A + iB)

Substituting for a and b in x and recalling that

e±iωt = cos ωt ± i sin ωt

we can write x alternatively as

x = A cos ωt + B sin ωt,

A, B are arbitrary constants to be specified by ICs.

Alternatively this solution can be expressed as

x = α cos(ωt − θ)

by letting A = α cos θ, B = α sin θ and using the trigono-
metric identity cos(ω − θ) = ...
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Fixing arbitrary constants:

In practice the arbitrary constants are specified by using
initial conditions.

For example, let at t = 0, x = x0 and u = u0.

Substituting into

x = A cos ωt + B sin ωt

we find A = x0.

Also differentiating x we have

u = ẋ = −Aω sin ωt + Bω cos ωt

which gives B = u0/ω.

Thus with these ICs we find

x = x0 cos ωt +
u0

ω
sin ωt
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2π/ω. To check recall that a function f(t) is called

periodic with period T if f(t) = f(t + T ). For
example

sinω(t+T ) = sinω(t+2π/ω) = sin(ωt+2π) = sin ωt.

Some important definitions:

α amplitude

T =
2π

ω
period

ω angular frequency

ν =
1

T
=

ω

2π
frequency

θ phase
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mass m in the neighbourhood of a point of stable
equilibrium of any potential energy function Φ(x)
is periodic (satisfies SHM) with period

T =
2π

ω
= 2π

√

m

k
= 2π

√

m

Φ′′(0)

Example: A particle of unit mass is placed at the posi-
tion of stable equilibrium of the potential energy function

Φ(x) =

(

x2

2
− x4

4

)

Find period of its oscillations if slightly disturbed.

Solution: For small disturbances we have SHM with
period

T =
2π√
Φ′′

, m = 1

Now Φ
′

=
(

x − x3
)

Points of equilibrium given by Φ
′

= 0

i.e. x = 0,±1. Also Φ
′′

= (1 − 3x2) which is negative at
x = 0 implying that this a point of stable equilibrium.
Also Φ

′′

(0) = 1 hence the period is

T =
2π

√

Φ′′(0)
= 2π
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Important remark: If the point of stable equilib-
rium is at x = a, then using Taylor expansion instead
we again find the motion is SHM with period

T = 2π

√

m

Φ′′(a)
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5 ODEs in brief

For more details see your Differential Equations notes.

5.1 Linear homogeneous ODE with
constant coefficients

Consider homogeneous linear ODEs of the form

a2
d2x

dt2
+ a1

dx

dt
+ a0 x = 0 (13)

where a0, a1, a2 are real constants.

To find the general solution look for solutions of type
x(t) = e pt, substitute in the ODE and solve for p.

In the case of the above 2ndn order Eq. this gives the
quadratic characteristic equation

a2 p2 + a1 p + a0 = 0 (14)

whose solution gives the two possible values for p.
Three possibilities arise depending on roots of Eq. (14).

Case A: the above quadratic equation two real roots,
say p1 and p2. The general solution to the equation (13)
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in the form
x(t) = Ae p1t + Be p2t

where A and B are arbitrary constants

Case B: the above quadratic equation has a repeated
root, p say. The general solution to equation (13) is then
given by

x(t) = (A + Bt)e pt

where A and B are constants

Case C: the above quadratic equation has two complex
conjugate roots of the form p = g ± hi. The general
solution to equation (13) is

x(t) = αe (g+hi)t + βe (g−hi)t

which α, β are arbitrary constants.

Alternatively this can be written as

x(t) = e gt(A cos(ht) + B sin(ht))

or
x(t) = ae gt cos(ht + θ)

where A, B, a, α and β are arbitrary constants,

[CHECK that the three forms are equivalent]
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constant coefficients

Consider the case where Eq. (13) has a non-zero
RHS thus

a2
d2x

dt2
+ a1

dx

dt
+ a0 x = f(t) (15)

where a0, a1, a2 are constants and f(t) is a function
of t.

The general solution to (15) is then given by

x(t) = xh(t) + xp(t)

where xh(t) is the general solution of the associated
homogeneous equation (13) and xp(t) is a particular
solution of the full inhomogeneous Eq. (15).

The solution xp(t) can usually be guessed by looking
at the the RHS of the Eq. (15).
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6 Damped SHM

In practice oscillations are damped by resistance,
naturally or artificially.

At low velocities, resistance force F ∝ ẋ.

So in presence of a resistive force, equation of motion
of SHM is modified by introducing a frictional force
−αẋ thus:

F = mẍ = −kx − αẋ

where α > 0 to ensure that force is damping instead
of forcing. We also take k > 0 to ensure oscillatory
rather than exponential motion.

Equation of damped simple harmonic motion is

mẍ + αẋ + kx = 0

This is a linear homogeneous ODE with constant
coefficients. To solve look for solutions of type

x = ept, with ẋ = pept, ẍ = p2ept

substituting we find

mp2 + αp + k = 0
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which has solutions

p = − α

2m
±

√

(

α

2m

)2

− k

m

or
p = −γ ±

(

γ2 − ω0
2
)1/2

, (16)

where γ = α
2m

and ω0 =
√

k
m

is the angular frequency
of the undamped oscillator.

Three cases arise depending upon the size of α or γ.

6.1 Large damping (large α): γ2 > ω0
2

Both roots (16) are real and negative:

p1 ≡ −γ1 = −γ −
(

γ2 − ω0
2
)1/2

p2 ≡ −γ2 = −γ +
(

γ2 − ω0
2
)1/2

The general solution becomes

x = Ae−γ1t + Be−γ2t

So as t grows, the displacement x → 0, i.e. damped out

exponentially.
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the time in which x is reduced by 1/e, is given by

tchγ2 ∼ 1, i.e. tch ∼ 1

γ2

6.2 Small damping (small α): γ2 < ω0
2

The roots of (16) are complex conjugates

p = −γ ± iω where ω =
√

ω0
2 − γ2

The general solution is

x =
1

2
Ae(iω−γ)t +

1

2
Be(−iω−γ)t

= e−γt
[

1

2
Aeiωt +

1

2
Be−iωt

]

where the factor 1/2 is chosen for convenience.
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conjugates. Letting A = ae−iθ, B = ae+iθ then

1

2
Aeiωt +

1

2
Be−iωt =

1

2
a

{

ei(ωt−θ) + e−i(ωt−θ)
}

=
1

2
a [2 cos(ωt − θ) + 0]

= a cos(ωt − θ)

Thus
x = ae−γt cos(ωt − θ) (17)

This solution represents oscillations with decay-
ing amplitudes {ae−γt} & angular velocity ω.
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Ratio of neighbouring amplitudes: that is am-
plitudes at t = t and t = t + π/ω.

Using solution (17)

x2

x1
=

ae−γ(t+π/ω)

ae−γt
·
cos(ωt + π − θ)

cos(ωt − θ)

The 2nd term is equal to −1 so the ratio becomes

x2

x1
= −e−

γπ

ω

which is true for all neighbouring amplitudes

xn+1

xn
= −e−

γπ

ω

Negative sign due to fact that neighbouring ampli-
tudes are on opposite sides of the x axis.

Thus the amplitudes of successive oscillations
decrease in a geometrical progression.

0-78

6.3 Critical damping: γ2 = ω0
2

In this case the 2 roots coincide and are = −γ.

The solution becomes x = (A + B)e−γt which contains
only one arbitrary constant (A + B).

This solution is therefore not general. We need a second
solution which we can take as [CHECk]

x = te−γt

The general solution is then

x = (a + bt)e−γt

To summarise: all damped oscillations even-
tually die out.
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critical damping solution falls off faster than the large
damping case. In most applications (e.g. reading meters,
hydraulic springs etc) it is desirable that once displaced,
the mechanism returns quickly & smoothly to its equi-
librium position. This is achieved by critical damping!

Remark 2: Mechanical energy of oscillations no longer
conserved as there is a dissipation due to damping.

Example: Plot the solution to SHM in the form
α sin(ωt − θ) in the x − ẋ plane.

What happens in the case of small damping case
αe−γt sin(ωt − θ)?
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damped simple harmonic oscillations satisfies the above
equation of motion. The three consecutive positions of
its instantaneous rest, relative to an arbitrary origin O,
are given by x = a, x = b, x = c. Show that the particle
ultimately comes to rest at a point whose distance x0

from O is given by

x0 =
ca − b2

a − 2b + c
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7 Forced, damped SHM

To maintain damped oscillations we need to force them.

Consider the response of a damped oscillator to a time
dependent applied force with Eq. of motion:

mẍ + αẋ + kx = F (t) (18)

As an example consider the case where F (t) is a periodic
function of the form

F (t) = F1 cosω1t

where F1, ω1 are constants.

Eq (18) is an inhomogeneous linear ODE with con-
stant coefficients.

The general solution has the form:

General Solutionx = xp(t) + xh(t)

where xh(t) is the general solution of the corresponding
homogeneous equation (with F (t) = 0);

and xp(t) is a particular solution of the the inhomoge-
neous equation (18).

We have already found xh(t) in the 3 possible cases.
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To find xp(t), the trick is to look for solutions of the
type given by the RHS.

Thus we can look for a solution of the form

x = a1 cos(ω1t − θ1)

where a1, θ1 are constants which can be determined
by substituting in (18). Dividing (18) by m and as-
suming, without loss of generality, m = 1, we obtain

ẍ + 2γẋ + ω0
2 = F1 cosω1t (19)

Now

ẋ = −a1ω1 sin(ω1t − θ1)

ẍ = −a1ω1
2 cos(ω1t − θ1)

Substituting we find

a1ω1
2 cos(ω1t − θ1) − 2γa1ω1 sin(ω1t − θ1)

+ ω0
2a1 cos(ω1t − θ1) = F1 cosω1t

or

a1

(

ω0
2 − ω1

2
)

cos(ω1t − θ1)

− 2γa1ω1 sin(ω1t − θ1) = F1 cosω1t
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− −

a1

(

ω0
2 − ω1

2
)

[cosω1t cos θ1 + sin ω1t sin θ1]

−2γa1ω1 sinω1t cos θ1 + 2γa1ω1 cos ω1t sin θ1

= F1 cosω1t

Equating coefficients of cos ω1t and sinω1t:
[

a1

(

ω0
2 − ω1

2
)

cos θ1 + 2γa1ω1 sin θ1

]

cosω1t

= F1 cosω1t
[

a1

(

ω0
2 − ω1

2
)

sin θ1 − 2γa1ω1 cos θ1

]

= 0

(20)

From the 2nd Eq. in (20) we have

tan θ1 =
2γa1ω1

a1 (ω0
2 − ω1

2)
=

2γω1

(ω0
2 − ω1

2)
(21)

Substituting from 2nd into the 1st Eq. in (20) for
sin θ1 in terms of cos θ1 we have

a1

(

ω0
2 − ω1

2
)

cos θ1 +
4γ2a1

2ω1
2 cos θ1

a1 (ω0
2 − ω1

2)
= F1

or

cos θ1

[

a1
2
(

ω0
2 − ω1

2
)2

+ 4γ2a1
2ω1

2
]

= F1a1

(

ω0
2 − ω1

2
)
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cos2 θ1

{[

a1
2
(

ω0
2 − ω1

2
)2

+ 4γ2a1
2ω1

2
]}2

= F1
2a1

2
(

ω0
2 − ω1

2
)2

(22)

But

cos2 θ1 =
1

1 + tan2 θ1
=

(

ω0
2 − ω1

2
)2

(ω0
2 − ω1

2)2 + 4γ2ω1
2

Substituting in (22) and taking the square root:

a1 =
F1

[

(ω0
2 − ω1

2)
2

+ 4γ2ω1
2
]1/2

(23)

Thus
xp = a1 cos(ω1t − θ1)

with a1, θ1 give by expressions (23) and (21).
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The general solution is then given by the sum
of this xp plus an appropriate xh.

For example in the case of small damping we have

x = a1 cos(ω1t − θ1) + ae−γt cos(ωt − θ)

Now in general as t → ∞ the 2nd term tends to zero
exponentially and it is called the transient. Thus

lim
t→∞

x −→ a1 cos(ω1t − θ1)

Therefore no matter what the ICs, the oscilla-
tions are ultimately governed by the external
force with the period of the applied force (ω1)
and not that of the undamped oscillator (ω0).
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7.1 Resonance

Looking closely at the expression

a1 =
F1

[

(ω0
2 − ω1

2)
2

+ 4γ2ω1
2
]1/2

we note that the amplitude a1 is strongly dependent
upon the frequencies ω0 and ω1. In particular when
ω0 = ω1, i.e. when the system’s frequency is equal
to the forcing frequency, then

a1 −→
F1

2γω1

Thus if γ → 0 (i.e. small damping) , then a1

becomes very large and in this case we say
the system is in resonance with amplitude

aR =
F1

2γω1

In practice we often wish to avoid this situation as
in case of construction of ships and bridges etc.
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8 Motion under a central force

Central forces are directed towards or away from
a fixed point (often taken as the origin) thus:

F = f(r)r̂

Central forces, include the force of gravity and the
electric force:

Examples: Force of gravity

F = −
Gm1m2

r2
r̂

which is attractive, i.e. towards the centre (origin)

or
F = rnr̂

which is a repulsive force, i.e. away from the centre
(origin)
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This can be checked by by noting that

∫ r
2

r
1

F ·dr =

∫ r
2

r
1

f(r)r̂·dr =

∫ r
2

r
1

f(r)
r · dr

r
=

∫ r
2

r
1

f(r)dr

where we have used

r · dr =
1

2

d

dt
(r · r) dt =

1

2

d

dt

(

r2
)

dt = rdr

Thus the integral is just dependent on r (is 1D) and
therefore depends only on the end points and not on the
path taken, showing that central forces are conservative.

Thus as for conservative forces we can define a potential
Φ and write the conservation law of energy

1

2
m |v|2 + Φ = KE + PE = E a constant

Definition: Angular momentum J of a particle of
mass m, velocity v about an origin a distance r is defined

J = r × p = r × mv
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II. Motion under central forces is planar
(2D) and conserves angular momentum.

To check look at the rate of change of angular momentum

dJ

dt
=

d

dt
(mr × v)

= (mv × v + mr × a)

= 0 + r × F

= r × f(r)r̂ = f(r)r × r̂ = 0

since r and r̂ are parallel and v × v = 0.

Thus under a central force the angular momen-
tum J is constant and hence conserved.

But J = constant implies two things: both mag-
nitude and direction of J are constants.

We shall now study the consequences of each in turn.
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Direction of J is constant:

Consider a particle of mass m with position vector r
and velocity v moving under the action of a central
force.

Its angular momentum is then given by J = mr× v.

Now from the definition of vector product J = mr×v
is a vector perpendicular to the plane of r and v.

The constancy of the direction of J implies that the
plane constituted by r and v remains the same as the
particle moves under the action of the central force.

Hence the motion under central forces are con-
fined to a plane, i.e. is 2-dimensional.
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Consider a planet as it moves a small distance along
its orbit, say from the point P with coords (r, θ) to a
neighbouring point P ′ with coords (r + ∆r, θ + ∆θ).

As the particle moves from P to P ′, the radius vector
sweeps an area given approximately by

∆A =
1

2
r(r∆θ)

which has the rate of change

∆A

∆t
=

1

2
r2 ∆θ

∆t

which in the limit of ∆t → 0 gives
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dA

dt
=

1

2
r2θ̇

Now the RHS can be expressed in terms of the mag-
nitude of the angular momentum vector J = mr× ṙ.
To see this recall that

ṙ = ṙêr + rθ̇êθ.

Then
J ≡ |J | = |mr × ṙ| = mr2θ̇

Substituting in the RHS gives

dA

dt
=

1

2
r2θ̇ =

J

2m
= constant

which shows that for motion under a central
force the rate of the area swept by the radius
vector is a constant.

This is Kepler’s 2nd law of planetary motions.

An important consequence of this law for ellipti-
cal orbits is that when planets are nearer to the Sun
they must move faster than when they are further
away as the area swept is a constant.
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8.1 Qualitative information about
motion under central forces

We saw central forces are conservative so motion un-
der such forces satisfies the energy conservation law

1

2
m |v|2 + Φ = E

which recalling that in polar coords v = ṙêr + rθ̇êθ

and |v|2 = ṙ2 + r2θ̇2 gives

1

2
m

(

ṙ2 + r2θ̇2
)

+ Φ = E

We can use J = mr2θ̇ to eliminate θ̇ and rewrite this
Eq. purely in terms of r, thus:

1

2
m

(

ṙ2 + r2 J2

(mr2)2

)

+ Φ = E

or
1

2
mṙ2 +

J2

2mr2
+ Φ = E

This is referred to as Radial Energy Equation.
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Now letting

J2

2mr2
+ Φ = U(r)

where U(r) is referred to as the Effective Potential
Energy (EPE), allows energy Eq to be written as

1

2
mṙ2 + U(r) = E

Note: This resembles the energy Eq. in 1D,
and again motion is possible only if E ≥ U(r).

Important difference: In this case, however, r is a
polar distance so above Energy Eq gives information
about motion in 2D.
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about motion under the action of the grav-
itational force

F = −
Gm1m2

r2
r̂.

Solution: We start with the energy equation

1

2
mṙ2 + U(r) = E, U(r) =

J2

2mr2
+ Φ

We have already calculated Φ for the force of gravity:

Φ = −
GmM

r

Substituting in U gives

U(r) =
J2

2mr2
−

GmM

r
.

Following possibilities arise depending
on the value of J
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straight line (like a particle thrown up ver-
tically)

For E < 0, shooting particle from origin reaches a
distance r1 and then returns to centre.

For E = 0, shooting particle from origin just escapes
to infinity. Escape velocity.

For E > 0, shooting particle from origin escapes to
infinity, arriving there with positive velocity.
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J 6= 0 : In this case

U(r) =
J2

2mr2
−

GmM

r

which letting ℓ = J2

Gm2M becomes

U(r) = GmM

(

ℓ

2r2
−

1

r

)

Now U(r) = 0 at r = ℓ/2 and has a min at r = ℓ
with U(ℓ) = −GMm/2ℓ.

For motion to exist we need E ≥ U .
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For E < −GmM/2ℓ, motion not possible

For E = −GmM/2ℓ we have ṙ2 = 0, which implies
r = constant, which is the Eq of a circle in polar
coords. Thus motion is circular.

For −GmM/2ℓ < E < 0, motion is confined to r1 ≤
r ≤ r2, i.e. motion is bounded, periodic and r can
vary between a min and max distance. Thus motion
is elliptical.
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ity, arriving there with zero speed, i.e. motion is
parabolic.

For E > 0. In this case particle can escape to infin-
ity, arriving there with positive speed, i.e. motion
is hyperbolic.
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9 Orbits

Above using the Energy equation we gave qualitative in-
formation about possible types of orbits under the force
of gravity.

Here we wish to obtain quantitative information by de-
riving the equation describing the orbits particles under
the force of gravity.

This will also allow us to derive the orbits of planets
around the Sun.

An immediate problem with the latter is that Sun and
planets are not point particles, but extended nearly
spherical bodies.

This raises the question of whether Newton’s inverse
square law of gravitation between 2 point particles still
holds in the case of Sun and planets.

This question is answered by the following theorem.

9.1 Newton’s sphere theorem

Starting with a spherical body of uniform density, this

theorem shows when it can be treat as a point particle.

0-101

We proceed in a number of steps:

• Subdivide sphere (assumed to have a uniform
density) into a set of concentric thin spherical
shells.

• Subdivide each shell into a set of rings all
points of which are equi–distant to the point
mass outside or inside the shell.

• Calculate the potential due to such a ring. Be-
ing a scalar, potential is much easier to calcu-
late than the force.

• Add the potentials due to all rings constituting
the shell by simple integration.

• Calculate the force due to shell.

• Add effects of all shells to find force due to
whole sphere.
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Potential due to a spherical shell:

Consider the potential due to a spherical shell of
uniform density and mass M on a particle of mass
m placed a distance r0 from its centre at a point P
outside or inside the shell.

Let the shell have a radius a, area 4πa2 and mass
per unit area σ = M/4πa2.
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the spherical shell, perpendicular to the line con-
necting P to the centre of the shell, i.e. a rotating
element around P subtending an angle dθ with thick-
ness adθ. The radius of the ring is a sin θ, its area is
(2πa sin θ)adθ and its mass is σ(2πa sin θ)adθ.

The potential due to this ring at P is the sum of the
potentials due to the elements of the ring.

Since all points of the ring have the same distance r
to P ,

Φring = −
GmMring

r
= −

Gmσ(2πa sin θ)adθ

r

The total potential of the spherical shell at point P
can be obtained by summing over all the rings, i.e.
integrating the above expression over θ ∈ [0, π]

Φshell =

∫

Φring = −

∫ π

0

2πGmσa2 sin θdθ

r

But from above Fig distance r of P to the ring is

r2 = (r0 − a cos θ)2 +a2 sin2 θ = r0
2 +a2−2ar0 cos θ
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Φshell = −GmMshell

2

∫ π

0

sin θdθ

(r0
2 + a2 − 2ar0 cos θ)1/2

which can be integrated to give

Φshell =
[

−GmMshell

2ar0

(

r0
2 + a2 − 2ar0 cos θ

)1/2
]π

0

Two cases arise:

Point P is outside the shell (r0 > a):

In this case the distance
(

r0
2 + a2 − 2ar0 cos θ

)1/2
which

is always +ve is

(r0 − a) at θ = 0

(r0 + a) at θ = π

Hence substituting in above integral gives

Φshell = −
GmMshell

r0

That is the potential is the same as that for
a point mass M placed at the centre of the
spherical shell and similarly the force.
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Point P is inside the shell (r0 < a):

In this case the distance
(

r0
2 + a2 − 2ar0 cos θ

)1/2

is

(a − r0) at θ = 0

(a + r0) at θ = π

Hence substituting in above integral gives

Φshell = −
GmMshell

a

Thus the potential inside the sphere is a con-
stant independently of the location of P so
the force is zero.

These results can be summarised as:

Newton’s sphere theorem: A spherical shell of

uniform density and mass M exerts the same grav-

itational force on a point mass outside the shell as

would a point particle of mass M at the centre. The

shell exerts no force on a mass inside it.
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Example: A diametric hole is bored through the
centre of the earth (which is assumed to be of uni-
form density). A stone is released from rest from
the surface of the earth. Ignoring the air resistance
in the hole describe the resulting motion. Find the
time it takes for the particle to travel to the other
end of the hole.

[Density of the earth = 5.5gm/cm3 and G = 6.67 ×
10−8CGS.]

[Hint: Use Newton’s sphere theorem]
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The above theorem allows the Newton’s gravita-
tional force law between point particles to be used
in the case of Sun and planets, which are assumed
to be spherical bodies with uniform density.

The starting point for deriving the Eq. of orbit of
a planet of mass m about the Sun (mass M), a dis-
tance r apart, is Newton’s 2nd law: F = ma.

We know that orbits under central forces and in par-
ticular gravitational field is planar. Thus we use po-
lar coordinates (r, θ) and recall the expressions

a =
(

r̈ − rθ̇2
)

êr +
(

2ṙθ̇ + rθ̈
)

êθ

F = −
GmM

r2
r̂, êr ≡ r̂

Thus the r & θ components of F = ma are:

m
(

r̈ − rθ̇2
)

= −
GmM

r2
(24)

m
(

2ṙθ̇ + rθ̈
)

= 0 (25)
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m

r

d

dt

(

r2θ̇
)

= 0

which implies

mr2θ̇ = J, a const

In fact as we saw before this constant is the magni-
tude of the angular momentum vector

J = |mr × ṙ| = mr2θ̇

Eq. (24) can be written more conveniently in terms
of a new variable u = 1/r. We then have

du

dθ
= −

1

r2

dr

dθ
Also

ṙ =
dr

dθ

dθ

dt
= −r2θ̇

du

dθ
= −

J

m

du

dθ

r̈ = −
J

m

d2u

dθ2
θ̇ = −

J2

m2r2

d2u

dθ2

Thus

r̈ − rθ̇2 = −
J2

m2r2

d2u

dθ2
−

J2

m2r3
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Substituting in (24) we have

m

(

− J2

m2r2

d2u

dθ2
− J2

m2r3

)

=
−GmM

r2

which dividing by − J2

m2r2 gives

d2u

dθ2
+ u =

Gm2M

J2
≡ 1

ℓ

where ℓ = J2

Gm2M
.

This is the equation of orbit in (u, θ) coords.

It is an inhomogeneous version of SHM equation.

Thus the general solution of this Eq. is

u = uh + up

where uh is the general solution of the LHS of this Eq.

and up is a particular solution of the entire Eq.

From SHM we had that uh = A cos(θ − θ0).

It is also easy to check that

up =
Gm2M

J2
≡

1

ℓ
is a particular solution.
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Adding this to the solution of the homogeneous part
we have the general solution of the orbit Eq.

u = A cos(θ − θ0) +
1

ℓ

which can be written as

1

r
≡ u =

1

ℓ
[e cos(θ − θ0) + 1]

where e is an arbitrary constant which needs to be de-
termined from the initial conditions of the orbit.

Above solution represents a conic section.

The following cases arise:

• e < 1. This implies ℓ
r > 0 with r always re-

maining finite: which represents an ellipse

• e = 1. This implies ℓ
r → 0 at (θ − θ0) = π;

which represents a parabola

• e > 1. This implies ℓ
r → 0 at some (θ−θ0) < π;

which represents a hyperbola

• e = 0. This implies ℓ
r = 1 or r = J2

Gm2M =
const = a; which represents a circle
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We showed that the orbit of planets move on ellipses
with the equation (e < 1)

1

r
≡ u =

1

ℓ
[e cos(θ − θ0) + 1]

It is useful to write this equation in its more familiar
form in Cartesian coords.

Recall the transformations rules between Cartesian
to Polar coords:

x = r cos θ, y = r sin θ

r =
√

x2 + y2, θ = tan−1
(y

x

)

Now the elliptic solution is (setting θ0 = 0 for sim-
plicity)

u ≡
1

r
=

1

ℓ
[e cos(θ) + 1]

which gives

ℓ = r + re cos(θ) = ℓ =
√

x2 + y2 + xe
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x2 + y2 = (ℓ − ex)2 = ℓ2 − 2ℓx + e2x2

Rearranging

x2(1 − e2) + 2eℓx + x2 = ℓ2

or

x2 +
2eℓx

1 − e2
+

y2

1 − e2
=

ℓ2

1 − e2

Completing the square by adding e2ℓ2/(1 − e2)2 to
both sides

(

x +
eℓx

1 − e2

)2

+
y2

1 − e2
=

ℓ2

(1 − e2)2

Defining a = ℓ/(1 − e2) and b2 = aℓ we have

(x + ae)2

a2
+

y2

b2
= 1

This is the equation of an ellipse in Cartesian
coordinates centred at (−ae, 0) with semi-major
and semi-minor axes given by a and b.
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To see recall

a =
1

2
[rmin + rmax] =

1

2
[rθ=0 + rθ=π]

=
1

2

[

ℓ

1 + e
+

ℓ

1 − e

]

=
ℓ

1 − e2
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Circular motion: in such motion |r| = r is a con-
stant and hence ṙ = 0. Hence recalling that

v = ṙêr + rθ̇êθ

then for a circular motion we have

|v|2 = r2θ̇2
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An important observable feature for any closed orbit.

Here wish to connect it to other quantities.

Recall that from Kepler’s 2nd law we had

dA

dt
=

J

2m
= constant

Integrating over the whole orbit

∫

orbit

dA =

∫ τ

0

J

2m
dt

which gives

A =
J

2m
τ → τ =

2mA

J

Now for an elliptical orbit the area is

A = πab

which gives

τ =
2πabm

J
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ℓ =
J2

Gm2M
, b2 = aℓ

Squaring and substituting we obtain

(

τ

2π

)2

=
a3

GM

which shows that
τ2 ∝ a3

i.e. square of period is proportional to cube of
semi-major axis.

This is Kepler’s 3rd law.

This can be used to weigh the Sun! by knowing the
semi-major axis of a planet a and its period τ .

Also knowing the ratio of periods of 2 planets we
can calculate the ratio of their semi-major axes.

Example: The semi-major axis of orbit of Jupiter is 5.2
times that of Earth. Find its orbital period in years.

Use above law for Earth and Jupiter and divide:

(

τearth

τjupiter

)2

=

(

aearth

ajupiter

)3
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Example: The eccentricity e of an artificial satel-
lite in orbit around the earth is 0.5 and its closest
distance to earth is 5Re (where Re is the radius of
the earth). What is its furthest distance from earth,
expressed in terms of Re?

Start with orbit Eq

1

r
=

1

ℓ
[e cos(θ − θ0) + 1]

Then rmin corresponds to (θ − θ0) = 0 which gives

1

rmin
=

1

ℓ
(1 + e)

Also rmax corresponds to (θ − θ0) = π which gives

1

rmin
=

1

ℓ
(1 − e)

Therefore
rmin

rmax
=

(1 + e)

(1 − e)
= 3

Thus
rmax = 3rmin = 15Re
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Example: The orbit of a synchronous communica-
tion satellite has been chosen so that viewed from
the Earth it appears to be stationary. find the ra-
dius of the orbit. Me = 5.98 × 1024kg, G =
6.67 × 10−11MKS

Use Kepler’s third law

( τ

2π

)2

=
a3

GM

and recall that for a synchronous orbit the period of
satellite is 24 hours, i.e. τ = 86400 secs.

Substituting for G, Me and τ we obtain

asatellite = 42000km = 42 × 106m
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These laws which were originally obtained on basis
of very accurate measurements of Tycho Brahe and
others including Kepler. They pre-date Newton’s
laws and were important for the latter’s development
and thus of historical interest. Here we have derived
them from Newton’s laws!

First law: Planets move on elliptic orbits with Sun
as a focus

Second law: Equal areas are swept by the line join-
ing the planets and the Sun (i.e. r) in equal times.
(true for any central force)

Third law: The square of the periods of the planets
as they orbit the Sun are proportional to the cube
of their respective mean distances from the Sun (i.e
τ2/a3 = const)

Here we have derived them from Newton’s laws!
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